首页> 外文会议>Conference on Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave >Deep Neural Networks to Improve the Dynamic Range of Zernike Phase-Contrast Wavefront Sensing in High-Contrast Imaging Systems
【24h】

Deep Neural Networks to Improve the Dynamic Range of Zernike Phase-Contrast Wavefront Sensing in High-Contrast Imaging Systems

机译:深度神经网络,提高高对比度成像系统中Zernike相位对比波形感测的动态范围

获取原文

摘要

In high-contrast imaging applications, such as the direct imaging of exoplanets, a coronagraph is used to suppress the light from an on-axis star so that a dimmer, off-axis object can be imaged. To maintain a high-contrast dark region in the image, optical aberrations in the instrument must be minimized. The use of phase-contrast-based Zernike Wavefront Sensors (ZWFS) to measure and correct for aberrations has been studied for large segmented aperture telescopes and ZWFS are planned for the coronagraph instrument on the Roman Space Telescope (RST). ZWFS enable subnanometer wavefront sensing precision, but their response is nonlinear. Lyot-based Low-Order Wavefront Sensors (LLOWFS) are an alternative technique, where light rejected from a coronagraph's Lyot stop is used for linear measurement of small wavefront displacements. Recently, the use of Deep Neural Networks (DNNs) to enable phase retrieval from intensity measurements has been demonstrated in several optical configurations. In a LLOWFS system, the use of DNNs rather than linear regression has been shown to greatly extend the sensor's usable dynamic range. In this work, we investigate the use of two different types of machine learning algorithms to extend the dynamic range of the ZWFS. We present static and dynamic deep learning architectures for single- and multi-wavelength measurements, respectively. Using simulated ZWFS intensity measurements, we validate the network training technique and present phase reconstruction results. We show an increase in the capture range of the ZWFS sensor by a factor of 3.4 with a single wavelength and 4.5 with four wavelengths.
机译:在高对比度成像应用,例如外行星的直接成像,一个日冕被用于从在轴星抑制光使得调光器,离轴物体可被成像。为了保持图像中的高对比度暗区域,在该仪器的光学像差必须被最小化。使用基于相衬泽尼克波前传感器(ZWFS)的测量和校正的像差已经研究了大分段孔径望远镜和ZWFS计划用于对罗马太空望远镜(RST)的日冕仪器。 ZWFS使亚纳米波前感测的精度,但是它们的响应是非线性的。基于Lyot型 - 低次波前传感器(LLOWFS)是一种替代技术,其中来自日冕的Lyot型停止拒绝光被用于小的波前的位移的线性测量。近来,采用深神经网络(DNNs)以从强度测量使相位恢复已被证明在若干光学配置。在一个LLOWFS系统,使用DNNs的而不是线性回归已经显示出大大延长传感器的可用动态范围。在这项工作中,我们研究了使用两种不同类型的机器学习算法的扩展ZWFS的动态范围。我们目前的静态和动态的深度学习架构的单和多波长测量,分别。使用模拟ZWFS强度测量,我们验证网络训练技术和本相位重建的结果。我们示出了在传感器ZWFS的捕捉范围由3.4倍具有单个波长,并增加4.5用四个波长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号