首页> 外文会议>ASME Pressure Vessels amp;amp;amp; Piping Conference >ADJUSTED J-R TOUGHNESS CURVE FOR PIPES USING J-A2 CRACK CONSTRAINT OF CT SPECIMENS AND 3D CRACK MESHES
【24h】

ADJUSTED J-R TOUGHNESS CURVE FOR PIPES USING J-A2 CRACK CONSTRAINT OF CT SPECIMENS AND 3D CRACK MESHES

机译:使用CT标本的J-A2裂纹约束调整了管道的J-R韧性曲线和3D裂纹网格

获取原文

摘要

The objective of this paper is to use two-parameter fracture mechanics to adjust a material J-R resistance curve (i.e. toughness) from the test specimen geometry to the cracked component geometry. As most plant equipment is designed and operated on the "upper shelf, a ductile tearing analysis may give a more realistic assessment of flaw tolerance. In most cases, tearing curves are derived from specimen geometries that ensure a high degree of constraint, e.g., SENB and CT. Therefore, there can be significant benefit in accountingfor constraint differences between the specimen geometry and the component geometry. In one-parameter fracture mechanics a single parameter, K or J-integral, is sufficient to characterize the crack front stresses. When geometry dependent effects are observed, two-parameter fracture mechanics can be used to improve the characterization of the crack front stress, using T-stress, Q, or A_2 constraint parameter. The A_2 parameter was be used in this study. The usual J-R power-law equation has two coefficients to curve-fit the material data (ASTM E1820). The adjusted J-R curve coefficients are modified to be a function of the A_2 constraint parameter. The measured J-R values and computed A_2 constraint values are related by plotting the J-R test data versus the A_2 values. The A_2 constraint values are computed by comparing the HRR stress solution to the crack front stress results of the test specimen geometry using elastic-plastic FEA. Solving for the two J-R curve coefficients uses J values at two Aa crack extension values j'rom the test data. A closed-form solution for the adjusted J-R coefficients uses the properties of natural logarithms. The solution shows the adjusted J-R exponent coefficient will be a constant value for a particular material and test specimen geometry, which simplifies the application of the adjusted J-R curve. A different test specimen geometry can be used to validate the adjusted J-R curve. Choosing another test specimen geometry, having a different A_2 constraint value, can be used to obtain the adjusted J-R curve and compare it to the measured J-R curves. The geometry of the component is also expected to have a different A_2 constraint compared to the material test specimen. The example examined here is an axial surface flaw in a pipe. The A_2 constraint for an axial surface cracked pipe is computed and used to obtain an adjusted J-R curve. The adjusted J-R curve shows an increase in toughness for the pipe as compared to the CT measured value. The adjusted J-R curve can be used to assess flaw stability using the driving force method or a ductile tearing instability analysis.
机译:本文的目的是使用双参数骨折力学来调节从试样几何形状到裂纹分量几何形状的材料J-R电阻曲线(即韧性)。由于大多数植物设备在“上架子上”,延性撕裂分析可能会产生更现实的对缺陷耐受性的评估。在大多数情况下,撕裂曲线源自标本几何形状,以确保高度约束,例如SENB因此,CT。因此,在试样几何形状和组件几何形状之间的约束差异可能存在显着的益处。在一个参数骨折力学中,单个参数,K或J-Integral,足以表征裂缝前应力。几何观察到依赖性效果,可以使用双参数裂缝力学使用T-rucess,Q或A_2约束参数来改善裂纹前应力的表征。在本研究中使用A_2参数。通常的JR功率 - 法律方程有两个系数曲线适合材料数据(ASTM E1820)。调整后的JR曲线系数被修改为A_2约束参数的函数。测量ured的j-r值和计算的a_2约束值是通过绘制j-r测试数据与a_2值来相关的相关关系。通过使用弹性塑料FEA将HRR应力解决方案与试样几何形状的裂缝前应力结果进行比较来计算A_2约束值。求解两个J-R曲线系数在两个AA裂缝扩展值J'ROM的测试数据中使用j值。用于调整后的J-R系数的闭合方案使用自然对数的性质。该解决方案显示调整后的J-R指数系数将是特定材料和测试样本几何形状的恒定值,这简化了调整后的J-R曲线的应用。可以使用不同的测试样本几何体来验证调整后的J-R曲线。选择具有不同A_2约束值的另一个测试样本几何,可用于获得调整后的J-R曲线并将其与测量的J-R曲线进行比较。与材料试样相比,该组件的几何形状也预期具有不同的A_2约束。这里检查的例子是管道中的轴向表面缺陷。计算轴向表面裂纹管的A_2约束并用于获得调整的J-R曲线。与CT测量值相比,调节的J-R曲线显示了管道韧性的增加。调节的J-R曲线可用于使用驱动力法或延展性撕裂不稳定分析来评估缺陷稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号