首页> 外文会议>SPE Canada Unconventional Resources Conference >3D Geomechanical Modeling in the Complex Fracture Network of the Horn River Shale Using a Fully-Coupled Hybrid Hydraulic Fracture HHF Model: Permeability Evolution and Depletion
【24h】

3D Geomechanical Modeling in the Complex Fracture Network of the Horn River Shale Using a Fully-Coupled Hybrid Hydraulic Fracture HHF Model: Permeability Evolution and Depletion

机译:三维地质力学建模在霍尔河页岩复杂骨折网络中使用完全耦合混合液压骨折HHF模型:渗透性进化与耗尽

获取原文

摘要

The objective of this paper is to improve the evaluation and characterization of the fracture network as well as the production matching in the Horn River Shale of Canada. The task is carried out by extending the hybrid hydraulic fracture (HHF) model introduced by Urban et al. (2017) to a fully coupled fluid flow- geomechanical model that considers the far field stress stemming from the overburden, sideburden and underburden of the shale reservoir in an optimized simulation grid. The model evaluates the effects of depletion, of fracture closure and of permeability change using a discretized complex fracture network. In this paper, the fracture network is discretized using microseismic observations, when available. However, microseismic data may be limited in some of the fractured stages, or like in the case of most hydraulically fractured wells it might be non-existent. The fully coupled HHF model is developed to (1) improve the shale characterization and the simulation history matching, (2) study the fracture closure and permeability change in the fracture network due to gas production, and (3) alleviate microseismic data scarcity by generating a representative fracture network of those stages where microseismic data are unavailable. The stress change from the initial hydraulic fracturing is evaluated in nine paths multi-level horizontal wells that penetrated the Horn River Shale. The stress shadow is corroborated with microseismic observations and exhibited areas with high fracture density and productivity. The HHF model further evaluates the reservoir response to pore pressure depletion stemming from production, which leads to stress and permeability changes, fracture closure, and fracture reorientation. The procedure improves the simulation history matching by improving reservoir characterization, especially in stages closer to the toe where an understanding of fracture network geometry is problematic due to the cloud dispersion and scarcity of the microseismicity. The model also evaluates interference between well-paths and helps to determinate the optimum well, fracture and stage spacing. The HHF model was used to observe changes in volume, permeability and fracture connectivity in undepleted areas close to the fracture network. These areas reveal possible candidates for refracturing. A refracturing scenario that restores fracture conductivity and increases the drainage area of the fracture
机译:本文的目的是改善加拿大喇叭河页岩中的裂缝网络的评价和表征。该任务是通过延长Urban等人引入的混合液压骨折(HHF)模型进行。 (2017)以完全耦合的流体流量流动地质力学模型,以优化的模拟网格中的覆盖层,侧面和粘附在页岩储层的覆盖层中的远场压力。该模型评估耗尽的效果,使用离散化复杂的裂缝网络进行断裂闭合和渗透性变化。在本文中,当可用时,使用微震观测离散化裂缝网络。然而,微震数据可能限于一些裂缝阶段,或者在大多数液压骨折井的情况下它可能是不存在的。完全耦合的HHF模型开发为(1)改善页岩表征和仿真历史匹配,(2)研究由于天然气生产,裂缝网络的断裂闭合和渗透性变化,(3)通过产生减轻微震数据稀缺性那些微震数据不可用的那些阶段的代表性骨折网络。初始水力压裂的压力变化在九条路径中进行了九个水平井,穿透喇叭河页岩。应力阴影用微震观察结果证实,并具有高裂缝密度和生产率的区域。 HHF模型进一步评估了储层对生产中孔隙压力耗尽的储存响应,这导致应力和渗透性变化,断裂闭合和裂缝重新定位。该过程通过提高储层表征来改善模拟历史匹配,特别是在靠近脚趾的阶段由于云分散和微动脉的稀缺而对骨折网络几何形状的理解是有问题的。该模型还评估了井路之间的干扰,并有助于确定最佳井,断裂和阶段间隔。 HHF模型用于观察靠近裂缝网络的未封闭区域中的体积,渗透率和断裂连通性的变化。这些区域揭示了可能的耐压候选者。一种恢复骨折导电性并增加骨折的排水区域的耐腐蚀场景

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号