首页> 外文会议>ASME Turbomachinery Technical Conference and Exposition >A METHODOLOGY FOR FULLY-COUPLED CFD ENGINE SIMULATIONS, APPLIED TO A MICRO GAS TURBINE ENGINE
【24h】

A METHODOLOGY FOR FULLY-COUPLED CFD ENGINE SIMULATIONS, APPLIED TO A MICRO GAS TURBINE ENGINE

机译:用于全耦合CFD发动机模拟的方法,适用于微燃气涡轮发动机

获取原文

摘要

The development of new generations of aircraft engines with reduced environmental impact heavily relies on high-fidelity 3D numerical analysis of the main engine components, compressor, combustion chamber, turbine and their interactions, including the transient and off-design behavior of the full engine. Unlike component-by-component analysis, which requires separate assumptions for the pressure and temperature boundary conditions for each component, a fully coupled approach requires only knowledge of the compressor inlet and turbine outlet flow conditions. In addition, the engine rotation speed can also be varied during the simulation to converge to the correct balance of power between compressor and turbine. This integrated approach provides a detailed description of the flow field inside the full engine at the desired operating point with one single CFD simulation. The full engine simulation methodology can be developed at several levels: (1) RANS simulations with mixing-plane interfaces between components; (2) advanced RANS treatment with inputs from the nonlinear harmonic (NLH) methodology to allow for tangential non-uniformity, such as hot streaks entering the turbine nozzle from the combustor; (3) inclusion of the unsteady rotor-stator interactions, via NLH, in compressor and turbine stages; (4) coupling with LES simulations in the combustor. This paper presents results from levels (1) and (2) of this methodology applied to a micro-turbine gas engine including the HP compressor, combustor, HP and LP turbines and the exhaust hood. The geometry has been obtained from the redesign of the KJ66 micro gas turbine engine using preliminary design tools. The injection and burning of fuel inside the combustion chamber are modeled with a simplified flamelet model. The paper presents the approach and results of the full engine simulation; as well as the initial steps towards level (3).
机译:具有降低的环境影响的飞机发动机的新一代飞机发动机的发展严重依赖于主发动机部件,压缩机,燃烧室,涡轮机及其相互作用的高保真3D数值分析,包括全发动机的瞬态和偏离设计行为。与组件组件分析不同,这需要针对每个部件的压力和温度边界条件的单独假设,完全耦合的方法仅需要了解压缩机入口和涡轮出口流动条件。另外,在模拟期间也可以改变发动机转速,以收敛到压缩机和涡轮机之间的正确功率平衡。该综合方法在具有单个CFD仿真的期望的操作点处提供了完整发动机内的流场的详细描述。完整的发动机仿真方法可以在几个层面开发:(1)在组件之间的混合平面界面进行速度模拟; (2)高级RAN处理来自非线性谐波(NLH)方法的输入,以允许切向不均匀性,例如进入燃烧器中的涡轮喷嘴的热条; (3)在压缩机和涡轮机阶段中包含不稳定的转子定子相互作用,通过NLH; (4)与燃烧器中的LES模拟耦合。本文介绍了应用于包括HP压缩机,燃烧器,HP和LP涡轮机和排气罩的微汽轮机气体发动机的水平(1)和(2)的结果。使用初步设计工具,从KJ66微燃气轮机的重新设计中获得了几何体。燃烧室内的燃料喷射和燃烧用简化的燧发燧弹模型建模。本文介绍了全发动机仿真的方法和结果;以及迈向水平的初始步骤(3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号