首页> 外文会议>International Symposium on Cavitation >Cavitation of Water Confined in Hydrophobic Nanoporous Materials
【24h】

Cavitation of Water Confined in Hydrophobic Nanoporous Materials

机译:疏水纳米多孔材料中限制的水空化

获取原文

摘要

Hydrophobic nanoporous materials immersed in water are emerging as promising means to store or dissipate energy [1-3]. In such applications, surface energy is accumulated when the water pressure is increased causing liquid intrusion inside the pores and can be subsequently released by decreasing pressure and triggering cavitation inside the pores. Given the extreme confinement, which for zeolites and metal organic frameworks can be below the nanometer, the phenomena of liquid intrusion and cavitation are expected to significantly deviate from the classical macroscopic laws: cavitation can happen at pressures larger than tens of MPa. In this contribution, we study via molecular dynamics the nucleation of a vapor cavity inside nanometer-sized hydrophobic pores and the opposite process of liquid intrusion. By employing advanced rare-event simulation techniques in order to tackle the long timescales typical of vapor nucleation, we obtain molecular-level insights into nanoconfined cavitation (and liquid intrusion) avoiding simulation artifacts [4]. The simulation campaign reveals deviations from the macroscopic Kelvin-Laplace law for liquid intrusion in a capillary and a significant increase of the cavitation rate as compared to the predictions of the classical nucleation theory. Furthermore, the behavior of nanoporous materials as molecular springs or as vibration dampers is critically discussed and related to their physical characteristics.
机译:浸入水中的疏水纳米多孔材料是储存或消散能量的承诺手段[1-3]。在这种应用中,当水压增加时累积表面能导致孔内的液体侵入,并且随后可以通过减小压力和触发孔内的空化而释放。鉴于极端限制,用于沸石和金属有机骨架可以在纳米以下,预计液体入侵和空化的现象将显着偏离经典的宏观定律:空化可以发生大于10mPa的压力。在这一贡献中,我们通过分子动力学研究纳米尺寸疏水孔内的蒸汽腔的成核和液体侵入的相反过程。通过采用先进的稀有事件仿真技术来解决典型的蒸气成核的长时间,我们将分子水平洞察纳入纳米醌空化(和液体入侵)避免模拟伪影[4]。与古典成核理论的预测相比,仿真运动揭示了毛细管液体入侵液体入侵的偏差,并与古典成核理论的预测相比的空化率的显着增加。此外,作为分子弹簧或振动阻尼器的纳米多孔材料的行为被批判性地讨论并与其物理特性有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号