【24h】

Chalcogenide Glass Sensors for Bio-molecule Detection

机译:用于生物分子检测的硫属化物玻璃传感器

获取原文

摘要

Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO_2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of micro-resonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.
机译:硫系玻璃构成的唯一的类仍然存在完全无定形而从2-20微米呈现宽的光学透明性,在整个红外区域的材料。这样,它们可以同时保留包括几乎任何分子的振动信号的清晰的光学窗成形为复杂的光学元件。因此,硫系玻璃是设计基于振动光谱生物和化学传感器的理想材料。在本文中,我们回顾这些玻璃的性能和生化传感光学元件的相应的设计。非晶硫族化合物提供了非常宽的组成景观允许调整其物理性能以匹配生产光学设备的具体要求。这包括剪裁过波长的特定范围内的红外窗口,例如长波红外区域捕捉,包括微生物的“签名区”或CO_2分子的弯曲模式的振动的重要信号。此外,组成工程使调谐玻璃的粘度 - 温度依赖性,以控制流变性质是生产玻璃元件的基本熔化。事实上,粘度的精美控制是关键的许多光学元件如纤维拉伸,透镜模制,表面压花或回流微谐振器的制造工艺。这些特性的最佳控制,然后使设计和优化的红外线传感器,例如光纤倏逝波光谱(FEWS)传感器,回音壁模式(WGM)微谐振器传感器,集成光学和表面增强工艺或透镜纳米结构化表面的制造成型为红外信号的聚焦集合。许多这些传感器设计可适应采集和监测的活的微生物的振动信号研究其代谢控制的环境条件。此外材料工程使光电传感器电泳允许同时捕捉和有害生物分子,例如细菌,病毒和蛋白质使用导电玻璃用作两个电极和光学元件的检测的设计。一旦足够的频谱分析,例如主成分分析(PCA)或偏最小二乘(PLS)回归这些器件使有害微生物的高度选择性识别如细菌和食物病原体的不同菌株。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号