首页> 外文会议>Fertilizer Latin Americano >Achieving optimal performance in downfired steam-methane reformers
【24h】

Achieving optimal performance in downfired steam-methane reformers

机译:实现蒸汽甲烷重整器的最佳性能

获取原文

摘要

Down-fired steam methane reformer furnaces utilize flue gas tunnels (aka "coffins") along the radiant section floor to collect and transport radiant section flue gas to the convection section for additional heat recovery. These tunnels range from 4 to 10 feet high, 2 to 3 feet wide, and 40 to 100 feet long, depending on the unit design capacity. Flue gas enters the tunnels through side wall openings which are distributed throughout the tunnel system to achieve uniform radiant flue gas flow. Conventional tunnel system physical features constrain design efficacy, resulting in non- uniform flue gas flow along the tunnel lengths and among tunnels. Non-uniform flue gas flow is correlated to non-uniform catalyst tube convective heating, varied tube temperatures, and early tube failures. BD Energy Systems have developed a new, patent-pending Tunnel Optimal Performance (TOP) design method to achieve near-perfect radiant flue gas flow uniformity, near-perfect catalyst tube temperatures with respect to convective heating, and improved tube longevity/reliability. BD Energy Systems are pleased that TOP tunnel system(s) are in production in North America and under consideration elsewhere in the world. This flue gas fine-tuning method has applications in Selective Non-Catalytic Reduction (SNCR) as well. Historically, radiant tunnel ammonia injection SNCR projects results have varied per reformer - some projects achieve required NOx reduction, while others fall short of expectations. The BD Energy Systems TOP-based flue gas control method increases in- tunnel flue gas mixing and NOx reduction, rendering ammonia injection a more predictable NOx reduction method. This paper compares conventional design results to TOP design results, focussing on benefits to radiant tube reliability and NOx reduction efficacy.
机译:沿着辐射部分底板利用烟气隧道(AKA“棺材)利用烟气隧道(AKA”棺材)收集和运输辐射截面烟气,以进入对流部分,以进行额外的热回收。这些隧道从4到10英尺高,2到3英尺宽,40至100英尺长,根据单位设计容量。烟气通过侧壁开口进入隧道,该侧壁开口分布在整个隧道系统中以实现均匀的辐射烟气流量。传统的隧道系统物理特征约束设计效果,导致沿着隧道长度和隧道之间的非均匀烟气流动。非均匀的烟气流量与非均匀催化剂管对流加热,变化的管温度和早期管故障相关。 BD能源系统开发了一种新的专利申请隧道最佳性能(顶部)设计方法,实现了近乎完美的辐射烟气流量均匀性,相对于对流加热的近乎完美的催化剂管温度,以及改善的管寿命/可靠性。 BD Energy Systems很高兴地隧道系统在北美生产,并在世界其他地方考虑。该烟道气体调节方法也具有选择性非催化还原(SNCR)的应用。历史上,辐射隧道氨注射SNCR项目的结果各种改革运动员变化 - 有些项目达到了所需的NOx,而其他项目则缺乏期望。 BD能量系统基于顶部的烟气控制方法增加了隧道烟气混合和NOx还原,再次注射氨注射更可预测的NOx还原方法。本文将常规设计结果与顶部设计结果进行了比较,侧重于对辐射管可靠性和NOx降低效能的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号