首页> 外文会议>International ESAFORM Conference on Material Forming >Three Dimensional Grain Boundary Modeling in Polycrystalline Plasticity
【24h】

Three Dimensional Grain Boundary Modeling in Polycrystalline Plasticity

机译:多晶可塑性三维晶界模型

获取原文

摘要

At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorienta-tion are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([1]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.
机译:在晶粒量表中,由于晶粒取向,几何和缺陷的变化,多晶材料开发异质塑性变形场,局部化和应力浓度。由于无恶意引起的粒状应力的开发对于一系列晶界(GB)相关的失效机制,例如应力腐蚀裂解(SCC)和疲劳裂化是至关重要的。微米级多晶金属的局部晶体塑性有限元建模导致压力在晶界处跳跃。此外,诸如晶界的晶粒和强度之间的脱位传递的概念不包括在建模中。高阶应变梯度晶体塑性建模方法提供了定义晶界状况的可能性。然而,这些条件主要不依赖于谷物的错误程度,并且只能定义极端情况。为了适当的晶粒边界行为定义可塑性,应将晶界行为模型结合到可塑性框架中。在这种情况下,特定晶界模型([1])掺入应变梯度晶体塑性框架([2])中。在3-D设置中,散装和晶粒边界模型都以ABAQU中的用户定义元素实现。应变梯度晶体塑性模型在散装元件中工作,并以自由度的程度考虑位移和塑料滑动。界面元素模型塑料滑动行为,但它们没有任何类型的机械凝聚力。通过数值示例解决了晶粒边界的物理方面和模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号