首页> 外文会议>Conference on Radar Sensor Technology XX >A quantum radar detection protocol for fringe visibility enhancement
【24h】

A quantum radar detection protocol for fringe visibility enhancement

机译:用于条纹可见性增强的量子雷达检测协议

获取原文

摘要

We present analysis of a radar detection technique using a Photon Addition Homodyne Receiver (PAHR) that improves SNR of the interferometer fringes and reduces uncertainty of the phase measurement. This system uses the concept of Photon Addition (PA) in which the coherent photon distribution is altered. We discuss this process first as a purely mathematical concept to introduce PA and illustrate its effect on coherent photon distribution. We then present a notional proof-of-concept experiment involving a parametric down converter (PDC) and probabilistic post-selection of the results. We end with presentation of a more deterministic PAHR concept that is more suitable for development into a working system. Coherent light illuminates a target and the return signal interferes with the local oscillator reference photons to create the desired fringes. The PAHR alters the photon probability distribution of the returned light via interaction between the return photons and atoms. We refer to this technique as "Atom Interaction" or AI. The returning photons are focused at the properly prepared atomic system. The injected atoms into this region are prepared in the desired quantum state. During the interaction time, the initial quantum state evolves in such a way that the photon distribution function changes resulting in higher photon count, lower phase noise and an increase in fringe SNR. The result is a 3-5X increase of fringe SNR. This method is best suited for low light intensity (low photon count, 0.1-5) applications. The detection protocol could extend the range of existing systems without loss of accuracy, or conversely enhance a system's accuracy for given range. We present quantum mathematical analysis of the method to illustrate how both range and angular resolution improve in comparison with standard measurement techniques. We also suggest an experimental path to validate the method which also will lead toward deployment in the field.
机译:我们使用光子加成零差接收机(PAHR)改善干涉条纹的SNR,并降低了相位测量的不确定度的雷达检测技术的目前的分析。该系统使用在其中相干光子分布被改变光子加成(PA)的概念。我们首先讨论这个过程作为一个纯粹的数学概念引入PA和说明其相干光子分布的影响。然后,我们提出一个概念上证明了概念实验涉及参量下转换器(PDC)和结果的概率后选择。我们结束与更多的确定性PAHR概念,它更适合于发展成为一个工作系统的演示。相干光照射的目标,并与本地振荡器参考光子返回信号干涉以产生期望的条纹。所述PAHR涂改的光子的概率分布经由返回光子和原子之间的相互作用返回光。我们将这种技术称为“原子体系”或AI。返回的光子被聚焦在适当的准备原子系统。注入的原子引入该区域以所需量子态制备。在相互作用时间,以这样的方式初始量子态的演进,所述光子分布函数变化导致更高的光子计数,较低的相位噪声,并增加了边缘SNR。其结果是边缘SNR的提升3至5增加。这种方法最适合于低光强(低光子计数,0.1-5)的应用。检测协议可以扩展现有系统的范围,而不损失精度,或者相反地增强系统对给定范围的精度。该方法的我们本量子数学分析来说明的范围和角分辨率如何与标准的测量技术相比提高。我们还建议实验路径来验证这也将朝现场部署领导方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号