首页> 外文会议>Conference on electro-optical and infrared systems: technology and applications XIII >Ray tracing simulation of aero-optical effect using multiple gradient-index layer
【24h】

Ray tracing simulation of aero-optical effect using multiple gradient-index layer

机译:使用多梯度索引层的航空光学效应的光线跟踪模拟

获取原文

摘要

We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.
机译:我们通过各向异性的不均匀介质为超音速流场围绕射弹,我们通过各向异性的不均匀介质展示了新的光学追踪模拟。新方法使用多个梯度索引(GRIN)层来构建各向异性不均匀介质和射线跟踪模拟。研究的锥形射弹具有19°半垂直角;蓝宝石窗口平行于锥角;并且通过段光学和红外图像检测器假设射弹的光学系统。通过计算流体动力学(CFD)进行的稳态求解器的条件包括速度,25km高度和0°攻角(AOA)的马赫数4和6。通过CFD分析和Gladstone-Dale关系的流场的网格折射率被离散地分成与弹丸窗口平行的相同间隔的层。通过拟合折射率分布,将每层建模为2D多项式的形式。光线的光源为不同的3,228射线,从10°到40°的不同视线(LOS)。射线跟踪模拟采用Snell的3D定律来计算胶片层中歪斜光线的路径。结果表明,光路差(OPD)和光标误差(BSE)随着LOS的增加而导数。折射率的变化降低,随着流场的速度增加了OPD,并且其在速度下的Mach数6的衰减速率比在速度下的Mach数4的值略大。与光线方程法相比,在Mach编号4和10°LOS中,新方法显示出良好的一致性,产生了相对根均方(RMS)OPD差异的0.33%的相对BSE差异。此外,新方法的仿真时间比传统的射线方程方法快20,000倍。新方法和模拟的技术细节具有结果和含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号