首页> 外文会议>Conference on earth observing systems XXI >Advanced Topographic Laser Altimeter System (ATLAS) Receiver Telescope Assembly (RTA) and Transmitter Alignment and Test.
【24h】

Advanced Topographic Laser Altimeter System (ATLAS) Receiver Telescope Assembly (RTA) and Transmitter Alignment and Test.

机译:先进的地形激光高度计系统(ATLAS)接收器望远镜组件(RTA)和变送器对准和测试。

获取原文

摘要

The sole instrument on NASA's ICESat-2 spacecraft shown in Figure 1 will be the Advanced Topographic Laser Altimeter System (ATLAS). The ATLAS is a Light Detection and Ranging (LIDAR) instrument; it measures the time of flight of the six transmitted laser beams to the Earth and back to determine altitude for geospatial mapping of global ice. The ATLAS laser beam is split into 6 main beams by a Diffractive Optical Element (DOE) that are reflected off of the earth and imaged by an 800 mm diameter Receiver Telescope Assembly (RTA). The RTA is composed of a 2-mirror telescope and Aft Optics Assembly (AOA) that collects and focuses the light from the 6 probe beams into 6 science fibers. Each fiber optic has a field of view on the earth that subtends 83 micro Radians. The light collected by each fiber is detected by a photomultiplier and timing related to a master clock to determine time of flight and therefore distance. The collection of the light from the 6 laser spots projected to the ground allows for dense cross track sampling to provide for slope measurements of ice fields. NASA LIDAR instruments typically utilize telescopes that are not diffraction limited since they function as a light collector rather than imaging function. The more challenging requirements of the ATLAS instrument require better performance of the telescope at the % wave level to provide for improved sampling and signal to noise. NASA Goddard Space Flight Center (GSFC) contracted the build of the telescope to General Dynamics (GD). GD fabricated and tested the flight and flight spare telescope and then integrated the government supplied AOA for testing of the RTA before and after vibration qualification. The RTA was then delivered to GSFC for independent verification and testing over expected thermal vacuum conditions. The testing at GSFC included a measurement of the RTA wavefront error and encircled energy in several orientations to determine the expected zero gravity figure, encircled energy, back focal length and plate scale. In addition, the science fibers had to be aligned to within 10 micro Radians of the projected laser spots to provide adequate margin for operations on-orbit. This paper summarizes the independent testing and alignment of the fibers performed at the GSFC.
机译:NASA的ICESAT-2航天器的唯一仪器如图1所示将是先进的地形激光高度计系统(ATLAS)。地图集是光检测和测距(LIDAR)仪器;它测量六个透射激光束到地球的飞行时间,并返回以确定全球冰的地理空间映射的高度。 ATLAS激光束通过衍射光学元件(DOE)分成6个主光束,该衍射光学元件(DOE)被反射从地球上反射并由直径800mm直径的接收器望远镜组件(RTA)成像。 RTA由2镜望远镜和船尾光学组件(AOA)组成,该组件收集并将光从6个探针光束从6个探针光束聚焦到6个科学纤维中。每个光纤有一个在地球上具有下列83微弧度的视野。由每个光纤收集的光由与主时钟相关的光电倍增器和定时检测,以确定飞行时间并因此距离。从投射到地面的6个激光斑点的光的集合允许密集的交叉采样采样,以提供冰田的斜率测量。 NASA LIDAR仪器通常利用不是衍射限制的望远镜,因为它们用作光收集器而不是成像功能。 ATLAS仪器的挑战要求越具挑战性要求需要在%波级的望远镜上更好地性能,以提供改进的采样和信号到噪声。美国宇航局戈达德太空飞行中心(GSFC)签订了望远镜的构建给一般动态(GD)。 GD制造和测试了飞行和飞行备用望远镜,然后整合了政府供应的AOA以测试振动资质前后的RTA。然后将RTA递送至GSFC以进行独立验证并测试预期的热真空条件。 GSFC的测试包括RTA波前误差的测量,并以几种方向环绕能量,以确定预期的零重力图,环绕的能量,后焦距和板秤。此外,科学纤维必须在投影激光斑点的10微米内对齐,以提供适当的操作轨道轨道。本文总结了在GSFC上进行的纤维的独立测试和对准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号