首页> 外文会议>International Conference on Science and Engineering >Nitrogen Ion Beam Modification of Alumina for Hard Tissue Implants
【24h】

Nitrogen Ion Beam Modification of Alumina for Hard Tissue Implants

机译:硬组织植入物氧化铝的氮离子束改性

获取原文

摘要

Alumina has wide applications in industry, automobiles, electrical appliances etc. However its application as biomaterial has started recently. We propose to improve the bio-physical, bio-chemical and bio-medical properties of alumina for its application as biomaterial by nitrogen ion implantation. Alumina is implanted with nitrogen ions at different energies (30 keV to 90 keV) and various ion doses (11015 ions/cm2 to 51017 ions/cm2). The microstructural changes and surface roughness of the specimens are characterized using Optical Microscope, Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). Nanolayered compound formation of nitrides & oxynitrides were observed using Glancing angle X-ray Diffraction (GXRD). Mechanical changes like hardness are studied using nanoindentation method. It is observed that corrosion resistance studied using Electrochemical analyzer (ECA) increases at lower energy and at intermediate ion dose. At higher energy and higher ion doses corrosion resistance deteriorates which is in co-ordinance with the micrstructural analysis. Bio-medical characterization of the specimens has been carried out by Wettability and Thrombogenicity tests. Wettability decreases in comparison with unimplanted samples. The thrombogenicity of unimplanted and implanted samples were evaluated using a whole blood kinetic clotting time method. From thrombogenicity test, it is concluded that at lower energy, thrombogenicity increases whereas for higher energy thrombogenicity decreases in comparison with the unimplanted samples. On the basis of all the above studies, best suitable energy and ion-dose is decided for the hard tissue replacement by alumina.
机译:氧化铝在工业,汽车,电器等方面具有广泛的应用。然而,它作为生物材料最近的应用。我们建议通过氮离子注入改善氧化铝的生物物理,生物化学和生物医学特性作为生物材料的应用。氧化铝以不同的能量(30keV至90keV)的氮离子植入,各种离子剂量(11015离子/ cm 2至51017离子/ cm 2)。样品的微观结构变化和表面粗糙度使用光学显微镜,扫描电子显微镜(SEM)和原子力显微镜(AFM)表征。使用透明角X射线衍射(GXRD)观察纳米层化合物形成氮化物和氮氧化物。使用纳米凸缘法研究了类似硬度的机械变化。观察到使用电化学分析仪(ECA)研究的耐腐蚀性在较低的能量和中间离子剂量下增加。在较高的能量和更高的离子剂量腐蚀性耐腐蚀性下降,其与微结构分析相协调。通过润湿性和血栓形成性测试进行了标本的生物医学表征。与未普通的样品相比,润湿性降低。使用全血动凝血时间方法评估未占用和植入样品的血栓形成性。从血栓形成性试验中,结论是,在较低的能量下,血栓形成性增加,而对于较高的能量血栓形成性,与未持有的样品相比减小。在所有上述研究的基础上,最佳合适的能量和离子剂量决定由氧化铝的硬组织替代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号