首页> 外文会议>International Conference on Applied Energy >Lithium-ion Battery State of Charge/State of Health Estimation Using SMO for EVs
【24h】

Lithium-ion Battery State of Charge/State of Health Estimation Using SMO for EVs

机译:锂离子电池的充电状态/健康状态使用SMO用于EVS

获取原文

摘要

Advanced battery management systems (BMS) in electric vehicles (EVs) require immediate and accurate battery state, such as State-of-Charge (SoC) and State-of-Health (SoH) for efficient monitoring and control. To improve the state estimation performance of battery, an electrochemical model is applied in this paper. First, the electrochemical model is reduced to describe the instantaneous Li-ion concentration dynamics of each electrode sufficiently without main information loss. Second, two separate sliding mode observers (SMOs) combined with reduced order electrochemical model are designed to identify SoC/SoH of lithium-ion cell from external measured voltage and current value. An estimation scheme which is comprised of two subestimators is designed. They work jointly: one separate sliding mode observer (SMO) for SoC estimation using Li-ion solid-electrolyte concentration and the other observer for cell contact resistance adopting Lyapunov's stability theory. Finally, in order to demonstrate the performance of proposed scheme, the simulations are verified by experiments from a 2.3Ah high-power LiFePOVgraphite cell used in EVs. The results indicate that the proposed estimation scheme with the SMO algorithm performs well with initial error values. The maximum SoC and SoH estimation error are less than 3% and 2.5% under Urban Dynamometer Driving Schedule (UDDS) drive cycles.
机译:电动车辆(EVS)中的先进电池管理系统(BMS)需要立即准确的电池状态,例如充电状态(SOC)和健康状态(SOH),以便有效监控和控制。为了提高电池的状态估计性能,本文应用了电化学模型。首先,减少电化学模型以描述每个电极的瞬时锂离子浓度动态,而没有主信息损失。其次,两个单独的滑动模式观察者(SMOS)与减小的阶电化学模型相结合,设计用于从外部测量的电压和电流值识别锂离子电池的SOC / SOH。设计了由两个低层器组成的估计方案。它们共同工作:使用锂离子固体电解质浓度和采用Lyapunov的稳定性理论的电池接触电阻的其他观测器,单独的滑动模式观察器(SMO)。最后,为了证明所提出的方案的性能,通过从EVS中使用的2.3Ah高功率救护室细胞的实验验证模拟。结果表明,具有SMO算法的建议估计方案符合初始误差值良好。在城市测力计驾驶计划(UDDS)驱动周期下,最大SOC和SOH估计误差小于3%和2.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号