首页> 外文会议>International Conference on Health Science and Biomedical Systems >Stronger Physical and Biological Measurement Strategy for Biomedical and Wellbeing Application by CICT
【24h】

Stronger Physical and Biological Measurement Strategy for Biomedical and Wellbeing Application by CICT

机译:CICT的生物医学和福利申请强大的物理和生物学测量策略

获取原文

摘要

Traditional good data and an extensive factual knowledge base still do not guarantee a biomedical or clinical good decision; good problem understanding and problem-solving skills are equally important. Decision theory, based on a "fixed universe" or a model of possible outcomes, ignores and minimizes the effect of events that are "outside model". In fact, deep epistemic limitations reside in some parts of the areas covered in decision making. Mankind's best conceivable worldview is at most a partial picture of the real world, a picture, a representation centered on man. Clearly, the observer, having incomplete information about the real underlying generating process, and no reliable theory about what the data correspond to, will always make mistakes, but these mistakes have a certain pattern. Unfortunately, the "probabilistic veil" can be very opaque computationally, and misplaced precision leads to confusion. Paradoxically if you don't know the generating process for the folded information, you can't tell the difference between an information-rich message and a random jumble of letters. This is "the information double-bind" (IDB) problem in contemporary classic information and algorithmic theory. The first attempt to identify basic principles to get stronger physical and biological measurement and correlates from experiment has been developing at Politecnico di Milano since the end of last century. In 2013, the basic principles on computational information conservation theory (CICT), from discrete system parameter and generator, appeared in literature. An operative example is presented. Specifically, high reliability organization (HRO), mission critical project (MCP) system, very low technological risk (VLTR) and crisis management (CM) system will be highly benefited mostly by these new techniques.
机译:传统的良好数据和广泛的事实知识库仍然不保证生物医学或临床良好决定;理解和解决问题的技巧同样重要。决策理论基于“固定宇宙”或可能结果的模型,忽略并最大限度地减少“外部模型”的事件的效果。事实上,深刻的认识局限性存在于决策中涵盖的区域的某些部分。 Mankind的最佳想象世界观是最重要的世界的部分照片,一张照片,以人为本的代表。显然,观察者,有关于真正的基础生成过程的不完整信息,并且没有关于数据对应的可靠理论,将始终犯错误,但这些错误具有一定的模式。遗憾的是,“概率的面纱”可以计算得非常不透明,错位精度导致混淆。矛盾的是,如果您不知道折叠信息的生成过程,则无法讲述信息丰富的消息和随机混杂的字母之间的区别。这是当代经典信息和算法理论中的“信息双绑定”(IDB)问题。自上世纪末以来,首次识别以获得更强的物理和生物学测量和实验相关的基本原则并与实验​​相关联。 2013年,来自离散系统参数和发电机的计算信息保护理论(CICT)的基本原则出现在文献中。呈现了操作示例。具体而言,高可靠性组织(HRO),任务关键项项项目(MCP)系统,非常低的技术风险(VLTR)和危机管理(CM)系统将受到这些新技术的高度利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号