首页> 外文会议>ASME Turbine Technical Conference and Exposition >Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes
【24h】

Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes

机译:冲击/积液冷却壁传热:减少相对于积液孔的冲击射流数

获取原文

摘要

Internal wall heat transfer for impingement/effusion cooling was measured and predicted using conjugate heat transfer (CHT) computational fluid dynamics (CFD). The work was only concerned with the internal wall heat transfer and not with the effusion film cooling and there was no hot gas crossflow. Previous work had predicted impingement/effusion internal wall cooling with equal number of holes. The present work investigated a small number of impingement holes and a larger number of effusion holes. The aim was to see if the effusion holes acted as a suction surface to the impingement surface flow and thus enhanced the wall heat transfer. Hole ratios of 1/4, 1/9 and 1/25 were studied by varying the number of effusion holes for a fixed array of impingement holes and a fixed impingement gap, Z, of 8 mm. The Z/D for the impingement holes was 2.7. The impingement hole pitch, X, to diameter, D ratio X/D was 10.6 at a constant effusion hole X/D of 4.7 for all the configurations. The impingement holes were aligned on the midpoint of four effusion holes. The results were computed for a mass flux G from 0.1 - 0.94 kg/sm~2 bar for all n. This gave 26 separate CFD/CHT computations. Locally surface, X~2, average heat transfer coefficient (HTC), h_x, values were determined using the lumped capacitance method. Nimonic 75 metal walls with imbedded thermocouples were used to determine h_x from the time constant in a transient cooling experiment following electrical heating to about 80°C. The CHT/CFD predictions showed good agreement with measured data and the highest number of effusion holes for the 1/25 hole ratio gave the highest h. However, comparison with the predicted and experimental results for equal number of impingement and effusion holes for the same Z, showed that there was little advantage of decreasing the number of impingement holes, apart from that of decreasing the Z/D significantly for the 1/15 hole ratio, which increased the heat transfer. The largest number of effusion holes had the highest heat transfer due to the greater internal surface area of the holes and their closer spacing. This was present irrespective of the number of impingement holes and there was no evidence of any benefit of the 25 effusion holes enhancing the single impingement jet heat transfer. For the lowest number of effusion hole there was predicted to be a small disadvantage of reducing the number of impingement jets.
机译:使用共轭传热(CHT)计算流体动力学(CFD)测量并预测用于冲击/积液冷却的内壁传热。这项工作仅涉及内壁传热而不是伴有流量薄膜冷却,没有热气体交叉流。以前的工作预测了具有相同数量的孔的冲击/积液内壁冷却。本工作调查了少量的冲击孔和更大的积液孔。目的是看看积液孔是否用作冲击表面流动的抽吸表面,从而增强了壁传热。通过改变固定阵列的冲击孔和固定的撞击间隙,Z,Z为8mm,通过改变光学孔的数量来研究1/4,1 / 9和1/25的空穴比。冲击孔的z / d为2.7。在所有配置的恒定流量孔X / D中,撞击孔间距x为直径D比X / D为10.6。冲击孔在四个积液孔的中点上对齐。将结果从0.1-0.94kg / sm〜2 bar计算出质量磁通g。这使得26个单独的CFD / CHT计算。局部表面,X〜2,平均传热系数(HTC),H_X,使用块状电容法测定值。使用嵌入的热电偶的镍氢金属壁用于从电加热后的瞬态冷却实验中的时间常数确定H_X,电加热至约80℃。 CHT / CFD预测显示了与测量数据的良好一致性,并且1/25孔比的最高流浪孔发出了最高的H.然而,与相同z的相同数量的冲击和积液孔的预测和实验结果的比较,表明几乎没有利于降低冲击孔的数量,除了为1 / /的显着降低Z / D而显着的影响。 15孔比,增加热传递。由于孔的内部表面积和更近距离的间隔,最大的积液孔具有最高的热传递。与撞击孔的数量无关,并且没有证据表明25个活力孔的有益处,提高了单一冲击喷射热传递。对于最低的积分孔数量,预测是减少冲击射流的数量的缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号