首页> 外文会议>Society of Petroleum Engineers Unconventional Resources Conference >Variable Stimulated Reservoir Volume (SRV) Simulation: Eagle Ford Shale Case Study
【24h】

Variable Stimulated Reservoir Volume (SRV) Simulation: Eagle Ford Shale Case Study

机译:可变刺激的储层卷(SRV)仿真:鹰福特页岩案例研究

获取原文

摘要

Production data analysis and reservoir simulation of the Eagle Ford shale are very challenging due to the complex characteristics of the reservoir and the fluids. Eagle Ford reservoir complexity is expressed in the enormous vertical and horizontal petro-physical heterogeneity, stress-sensitive permeability, and existence of multi-scale natural fracture and fault systems. This complexity makes the prediction of the geometry and conductivity of the hydraulic fracture resulting from the stimulation process rather challenging. On the other hand, reservoir fluid complexity is demonstrated in multi-phase flow, liquid loading in the wellbore, condensate banking, etc. Based on this complexity, 3D reservoir modeling and numerical simulation have the relative advantage of addressing irregular fracture geometry, variable SRV, and multi-phase flow aspects. The South Texas Asset Team at Pioneer Natural Resources is establishing a workflow for dynamic reservoir modeling that can integrate all reservoir/wellbore parameters (formation evaluation, drilling, completion, stimulation, pre-/post-fracture surveillance, and well performance data) in order to address key questions relating to field development; such as depletion efficiency, drainage area, wells interference, and condensate banking effects. In this paper, a case study is presented to demonstrate the integration of various measurements and surveillance data to build a variable SRV reservoir model. The variable SRV model described here has the following building blocks: 1) Formation evaluation: included all the reservoir characterization data derived from logs and 3D seismic inversions and structural attributes. 2) Surveillance data integration: microseismic data (backbone for this work) are integrated with chemical and radioactive tracer logs. 3) Well performance data integration: Production data is used to determine different flow regimes during the well history and to set bounds for stimulation parameters, such as fracture half-length and permeability ( √ ). 4) Numerical simulation: Micro-seismic attributes (density and magnitude) are converted to a permeability model after being calibrated with tracer logs and production flow regime parameters ( √ ). PVT data is matched against an Equation of State (EOS) and input into the model. Production data history matching, sensitivity and forecasting indicate the following: a) The SRV created by fracture stimulation has permeability fading away from the wellbore; b) Fracture geometry is variable and results in an irregular drainage area along the lateral; C) Onset of condensate banking near wellbore and along the fracture(s) can occur within the first year of production if draw down is not managed properly.
机译:生产数据分析和鹰福特页岩的储层模拟非常由于在储存器和流体的复杂特性具有挑战性。鹰福特储复杂度中的巨大的垂直和水平石油物理异质性表达,应力敏感的渗透性,和多尺度天然裂缝和断裂体系的存在。这种复杂性使得从所述刺激过程,而具有挑战性产生的水力裂缝的几何结构和导电性的预测。在另一方面,储层流体的复杂性表现在多相流,在井筒液加载,凝析物积聚等。基于这种复杂性,3D油藏建模和数值模拟具有不规则寻址裂缝几何形状的相对优点,可变SRV和多相流的方面。在先锋自然资源南得克萨斯资产小组正在建立动态油藏建模工作流程,可以为了所有水库/井筒参数(地层评价,钻井,完井,增产,前置/后置断裂监控,和良好的性能数据)整合对有关领域的发展地址的主要问题;如消耗效率,流域面积,井的干扰和凝析物的影响。在本文中,一个案例进行了分析演示各种测量和监测数据的整合,建立一个变量SRV油藏模型。可变SRV模型此处描述具有下列组成部分:1)地层评价:包括所有从日志和三维地震反演和结构属性导出的储层表征数据。 2)监测数据集成:微震数据(骨干,为这项工作)都集成了化学和放射性示踪剂日志。 3)唔性能数据集成:生产数据被用于在井的历史和用于刺激参数组边界,诸如裂缝半长和渗透性(√)来确定不同的流动方式。 4)的数值模拟:微地震属性(密度和大小)与示踪剂日志和生产流态参数(√)被校准后转换为渗透率模型。 PVT数据与状态(EOS)的方程并输入到模型匹配。生产数据的历史匹配,灵敏度和预测表示以下:a)通过压裂产生的SRV具有渗透性从井筒消逝; B)断裂的几何形状是可变的,并且在沿着横向的不规则流域面积的结果; C)发病井筒附近,并沿断裂(S凝析的),如果能画下来没有正确管理生产的第一年内发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号