首页> 外文会议>SPIE Conference on Nanophotonics and Micro/Nano Optics >In-situ characterization of surface-plasmon-enhanced photocatalysis of Ag decorated black TiO_2 by IR-AFM
【24h】

In-situ characterization of surface-plasmon-enhanced photocatalysis of Ag decorated black TiO_2 by IR-AFM

机译:IR-AFM原位表征AG装饰黑色TiO_2的Ag装饰黑色TiO_2的表征

获取原文
获取外文期刊封面目录资料

摘要

TiO_2 thin film photocatalysis has suffered from poor photocatalytic efficiency due to its low surface area-to-volume ratio. The efficiency can be enhanced by narrowing the bandgap, defect engineering or introducing surface plasmonic effect. However, the fabrication process is normally complicated and time consuming. This work offers a simple method to fabricate disordered defect-rich black TiO_2 ultrathin film by atomic layer deposition (ALD). Surface defects of TiO_2 have been suggested to play a significant role in the process of photocatalysis. With ALD, the bandgap and surface defects of the material can be controlled effectively through the deposition parameters. Surface plasmonic effects could also be introduced by the deposition of Ag nanoclusters via simple thermal evaporation. Absorption at ~450 nm was significantly enhanced. The overall photocatalytic behavior of composite material is greatly boosted and we observed an excellent efficiency towards the degradation of organic pollutants such as bisphenol A. The mechanism of surface plasmonic enhanced black TiO_2 photocatalysis was studied by in-situ infrared atomic force microscope (IR-AFM) under the illumination of different wavelength. The reaction sites of the composite materials were determined accurately and the working mechanism was discussed.
机译:的TiO_2薄膜光催化已经从光催化效率差遭受由于其低的表面面积 - 体积比率。效率可以通过缩小带隙,缺陷工程或引入表面等离激元的效果被增强。然而,制造工艺通常复杂且耗时的。这项工作通过原子层沉积(ALD)提供了一种简单的方法来丰富缺陷编造无序黑色的TiO_2超薄膜。的TiO_2的表面缺陷已经提出发挥光催化的过程中显著的作用。用ALD,该材料的带隙和表面缺陷,可以有效地通过沉积参数来控制。表面等离子体效应也可通过经由简单的热蒸发的Ag纳米团簇的沉积引入。吸收在约450nm下显著增强。复合材料的光催化总体行为是极大地增强了我们观察到的向有机污染物降解的优异效率,如双酚A.研究通过原位表面等离子体激元增强的黑色的TiO_2光催化机理红外原子力显微镜(IR-AFM )不同波长的照射下。的复合材料的反应位点被精确地确定并讨论了工作机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号