首页> 外文会议>National Meeting Exhibition >Effect of Recycle of Non-Condensable Pyrolysis Gases on Fractional Catalytic Pyrolysis of Biomass
【24h】

Effect of Recycle of Non-Condensable Pyrolysis Gases on Fractional Catalytic Pyrolysis of Biomass

机译:不可冷凝热解气体对生物质分数催化热解的影响

获取原文

摘要

Catalytic fast pyrolysis technology is one of the thermochemical platforms that can be used to produce high quality bio-oil and chemicals from biomass feedstocks (Adjaye and Bakhshi, 1995; Agblevor et al., 2010a; Williams and Horne, 1995). The process involves the rapid heating of biomass under inert atmosphere in the presence of a suitable catalyst. The technology has been extensively reviewed in the literature by Huber and Corma (2007), Park et al. (2011) and Taarning et al. (2011). In catalytic pyrolysis, a large fraction of the biomass is converted into non-condensable gases (NCG) at the expense of the liquid product. The gas product yield obtained on a dry biomass feed is about 20–50% depending on the type of catalyst used (Agblevor et al., 2010a; Lappas et al., 2009; Mante et al., 2011; Williams and Horne, 1995; Zhang et al., 2009). It mainly consists of carbon oxides, methane, hydrogen and minor hydrocarbons (Huber and Corma, 2007; Stefanidis et al., 2011; Williams and Horne, 1994). These gases can be recycled into the reactor to assist in fluidization or could be combusted to provide process heat for large scale operations. The concept of recycling NCG can help reduce operational cost and eliminate further downstream processing of the gas stream. Studies have shown that with efficient condensation systems and compressors, the NCG can be effectively recycled to replace the initial inert fluidizing gas (Agblevor et al., 2010b; Bridgwater, 1999). Theoretically, recycling the NCG for fluidization could possibly influence the catalytic pyrolysis of biomass as these gases are capable of acting as co-reactants in the process. Studies have shown that the reducing gas stream (CO, H2, and hydrocarbons) and mild oxidative gas (CO2) affect the thermal decomposition of biomass (Butterman and Castaldi, 2009a; Butterman and Castaldi, 2007; Butterman and Castaldi, 2009b; Carlson et al., 2009; Jindarom et al., 2007; Meesuk et al., 2011; Scahill and Diebold, 1988; Thangalazhy-Gopakumar et al., 2011; Zhang et al., 2011). Zhang et al. (2011) investigated the effect of N2, CO2, CO, CH4 and H2 as carrier gases on the fast pyrolysis of corncob in a fluidized bed reactor. They reported that the liquid yield was dependent on the type of gas used and more oxygen was converted to CO2 and H2O in the presence of CO and H2. Meesuk et al. (2011) also reported that lower liquid yields were achieved in H2 atmosphere from the fast pyrolysis of rice husk in a fluidized bed reactor with or without CoMo/Al2O3 and Ni/LY catalyst. A study by Thangalazhy-Gopakumar et al. (2011) also reported a reduction in carbon yield when the thermogravimetric studies of pine wood chips under helium was changed to H2. However, they did not observe any significant change in the yield when the experiment was conducted with a ZSM-5 zeolite catalyst. Studies by Carlson et al. (2011) on the production of green aromatics and olefins from wood sawdust via catalytic fast pyrolysis using ZSM-5 zeolite showed that co-feeding light hydrocarbons (C2–C3) with wood increased gasoline yields. An earlier work by Scahill and Diebold (1988) also explored the effect of recycling olefins over HZSM-5 zeolite catalyst in the upgrading of pyrolysis vapors from wood. Most of the literature reports are on only the effect of individual gases on the pyrolysis of biomass. Currently, there are no reported findings on the influence of recycling the pyrolysis gas on catalytic pyrolysis of biomass. In this study, the effect of recycling the NCG from the fractional catalytic pyrolysis of hybrid poplar wood using FCC catalyst on the product yields and properties of the bio-oils was investigated.
机译:催化快速热解技术是可用于生产生物量原料的高品质生物油和化学品的热化学平台之一(Addaye和Bakhshi,1995; Agblevor等,2010A; Williams和Horne,1995)。该方法涉及在合适的催化剂存在下快速加热生物质在惰性气氛下的加热。该技术在Huber和Corma(2007),Park等人的文献中已广泛审查。 (2011)和Taarning等人。 (2011)。在催化热解中,将大部分的生物质以液体产物的牺牲代替转化为不可冷凝的气体(NCG)。取决于所用催化剂的类型(Agblevor等,2010A; Lappas等,2009; Mante等,2011; Williams和Horne,1995 ;张等人。,2009)。它主要由碳氧化物,甲烷,氢气和次要碳氢化合物(Huber和Corma,2007; Stefanidis等,2011;威廉姆斯和Horne,1994)组成。这些气体可以再循环到反应器中以辅助流化或可以燃烧以提供大规模操作的工艺热量。再循环NCG的概念可以帮助降低运营成本并消除进一步的气流下游加工。研究表明,利用有效的冷凝系统和压缩机,可以有效地再循环NCG以更换初始惰性流化气(Agblevor等,2010B; Bridgwater,1999)。从理论上讲,回收NCG的流化可能影响生物质的催化热解,因为这些气体能够作为该方法的共反应物作用。研究表明,还原气流(CO,H 2和烃)和轻度氧化气体(CO2)影响生物量的热分解(Butterman和Castaldi,2009a; Butterman和Castaldi,2007; Butterman和Castaldi,2009B; Carlson等Al。,2009; Jindarom等,2007; Meesuk等,2011; 1988年; Thangalazhy-Gopakumar等,2011;张等人,2011)。张等人。 (2011)研究了N2,CO 2,CO,CH4和H2作为载气在流化床反应器中玉米拍的快速热解的作用。他们报道,液体产率取决于所用的气体类型,在CO和H 2存在下,将更多的氧转化为CO 2和H 2 O。 Meesuk等。 (2011)还报道,在流化床反应器中的稻壳的快速热解,在流化床反应器中,在具有或不具有COMO / AL2O3和Ni / Ly催化剂的流化床反应器中,在H 2气氛中实现了较低的液体产率。 Thangalazhy-Gopakumar等的研究。 (2011)还报告了在氦下的松木碎片的热重试验研究时碳产量降低了氦。然而,当用ZSM-5沸石催化剂进行实验时,它们并没有观察到产量的任何显着变化。 Carlson等人的研究。 (2011)通过使用ZSM-5沸石的催化快速热解,通过催化快速热解,使用ZSM-5沸石的生产绿色芳烃和烯烃的生产表明,用于木材的汽油产量的共送光烃(C2-C3)。 Scahill和Diebold(1988)的早期工作还探讨了回收烯烃在HZSM-5沸石催化剂中的效果在从木材中升级热解蒸汽的升级中。大多数文献报告仅是单个气体对生物质热解的影响。目前,没有报道关于回收热解气体对生物质催化热解的影响的结果。在本研究中,研究了利用FCC催化剂对产物产率和生物油的性质的FCC催化剂对杂交杨木的分数催化热解的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号