首页> 外文会议>International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes >Anisotropic Hardening Model Based on Non-Associated Flow Rule and Combined Nonlinear Kinematic Hardening for Sheet Materials
【24h】

Anisotropic Hardening Model Based on Non-Associated Flow Rule and Combined Nonlinear Kinematic Hardening for Sheet Materials

机译:基于非相关流量规则的各向异性硬化模型及板材的组合非线性运动硬化

获取原文

摘要

A material model for more effective analysis of plastic deformation of sheet materials is presented in this paper. The model is capable of considering the following aspects of plastic deformation behavior of sheet materials: the anisotropy in yielding stresses in different directions by using a quadratic yield function (based on Hill’s 1948 model and stress ratios), the anisotropy in work hardening by introducing non-constant flow stress hardening in different directions, the anisotropy in plastic strains in different directions by using a quadratic plastic potential function and non-associated flow rule (based on Hill’s 1948 model and plastic strain ratios, r-values), and finally some of the cyclic hardening phenomena such as Bauschinger’s effect and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening (so-called Armstrong-Frederick-Chaboche model). Basic fundamentals of the plasticity of the model are presented in a general framework. Then, the model adjustment procedure is derived for the plasticity formulations. Also, a generic numerical stress integration procedure is developed based on backward-Euler method (so-called multistage return mapping algorithm). Different aspects of the model are verified for DP600 steel sheet. Results show that the new model is able to predict the sheet material behavior in both anisotropic hardening and cyclic hardening regimes more accurately. By featuring the above-mentioned facts in the presented constitutive model, it is expected that more accurate results can be obtained by implementing this model in computational simulations of sheet material forming processes. For instance, more precise results of springback prediction of the parts formed from highly anisotropic hardened materials or that of determining the forming limit diagrams is highly expected by using the developed material model.
机译:本文提出了一种用于更有效地分析片材的塑性变形的材料模型。该模型能够考虑片材塑性变形行为的以下各个方面:通过使用二次屈服功能(基于山的1948年模型和应力比),通过引入非工作的各向异性在不同方向上屈服的各向异性。 - 在不同方向上的流量应力硬化,通过使用二次塑料潜在功能和无关的流量规则(基于Hill 1948模型和塑性应变比,R值),塑性菌株在不同方向上的各向异性。最后一些通过使用耦合的非线性运动硬化(所谓的Armstrong-Frederick-ChabochoOche模型,循环硬化现象,例如Bauschinger的效果和瞬态行为,以反向负载(所谓的Armstrong-Frederick-ChabochoOche模型)。一般框架中介绍了模型可塑性的基本基础。然后,衍生模型调整过程为可塑性制剂。此外,基于后向欧拉方法(所谓的多级返回映射算法)开发了通用数值应力集成过程。为DP600钢板验证了模型的不同方面。结果表明,新模型能够更准确地预测各向异性硬化和循环硬化方案的片材行为。通过在呈现的本构模型中具有上述事实,预期通过在片材形成过程的计算模拟中实现该模型可以获得更准确的结果。例如,通过使用开发的材料模型,高度期望由高各向异性硬化材料形成的零件的回弹预测的更多精确结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号