首页> 外文会议>SPIE Conference on Ground-based and Airborne Instrumentation for Astronomy >The Infrared Imaging Spectrograph (IRIS) for TMT: optical design of IRIS imager with 'Co-axis double TMA'
【24h】

The Infrared Imaging Spectrograph (IRIS) for TMT: optical design of IRIS imager with 'Co-axis double TMA'

机译:用于TMT的红外成像光谱仪(虹膜):带有“共轴双TMA”的虹膜成像仪的光学设计

获取原文

摘要

IRIS (InfraRed Imaging Spectrograph) is one of the first-generation instruments for the Thirty Meter Telescope (TMT). IRIS is composed of a combination of near-infrared (0.84-2.4 μm) diffraction limited imager and integral field spectrograph. To achieve near-diffraction limited resolutions in the near-infrared wavelength region, IRIS uses the advanced adaptive optics system NFIRAOS (Narrow Field Infrared Adaptive Optics System) and integrated on-instrument wavefront sensors (OIWFS). However, IRIS itself has challenging specifications. First, the overall system wavefront error should be less than 40 nm in Y, z, J, and H-band and 42 nm in K-band over a 34.0 × 34.0 arcsecond field of view. Second, the throughput of the imager components should be more than 42 percent. To achieve the extremely low wavefront error and high throughput, all reflective design has been newly proposed. We have adopted a new design policy called "Co-Axis double-TMA", which cancels the asymmetric aberrations generated by "collimator/TMA" and "camera/TMA" efficiently. The latest imager design meets all specifications, and, in particular, the wavefront error is less than 17.3 nm and throughput is more than 50.8 percent. However, to meet the specification of wavefront error and throughput as built performance, the IRIS imager requires both mirrors with low surface irregularity after high-reflection coating in cryogenic and high-level Assembly Integration and Verification (AIV). To deal with these technical challenges, we have done the tolerance analysis and found that total pass rate is almost 99 percent in the case of gauss distribution and more than 90 percent in the case of parabolic distribution using four compensators. We also have made an AIV plan and feasibility check of the optical elements. In this paper, we will present the details of this optical system.
机译:虹膜(红外成像光谱仪)是三十米望远镜(TMT)的第一代仪器之一。虹膜由近红外(0.84-2.4μm)衍射有限成像器和积分场光谱仪组成的组合。为了在近红外波长区域实现近衍射有限的分辨率,IRIS使用先进的自适应光学系统Nfiraos(窄场红外自适应光学系统)和集成在仪器上的波前传感器(OIWFS)。但是,虹膜本身具有具有挑战性的规格。首先,整个系统的波前误差应在Y,Z,J小于40nm,和H-谱带和在K波段在视34.0×34.0角秒字段42纳米。其次,成像器组件的吞吐量应超过42%。为了实现极低的波前误差和高吞吐量,新的所有反光设计都已新提出。我们采用了一个名为“共轴双TMA”的新设计策略,其取消了“准直器/ TMA”和“Camera / TMA”产生的非对称像差。最新的成像器设计符合所有规格,特别是波前误差小于17.3 nm,吞吐量超过50.8%。然而,为了满足波前误差和吞吐量的规范,因为内置性能,虹膜成像器需要在低温和高级装配集成和验证(AIV)中高反射涂层后具有低表面不规则的镜子。为了应对这些技术挑战,我们已经完成了公差分析,发现,在使用四个补偿器的抛物线分布的情况下,在高斯分配的情况下,总通量率近99%。我们还制定了光学元件的AIV计划和可行性检查。在本文中,我们将介绍该光学系统的细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号