【24h】

Ultrafast energy flow in hybrid plasmonic materials

机译:混合等离子体材料中的超快能量流动

获取原文
获取外文期刊封面目录资料

摘要

Nanoscale materials absorb, propagate, and dissipate energy very differently than their bulk counterparts. Furthermore, hybrid nanostructures consisting of molecular and plasmonic materials with strongly coupled electronic states can produce new optical states and decay pathways that provide additional handles with which to externally control energy flow in complex nanostructured systems. In this talk, we discuss our recent studies of electromagnetic coupling and associated temporal dynamics of molecular excitations with plasmonic resonances supported by either localized or extended planar geometries. Recent experimental results and theoretical analysis for observing and controlling coherences between molecular excitations and plasmonic polarizations are shown. Advances will explore new directions in ultrafast manipulation of energy dissipation processes in hybrid plasmonic structures, as well as ultrafast addressing and switching in plasmonics-based circuit architectures. Also discussed are recent synthetic advances in the creation of hybrid materials. Ultimately, these studies may impact a range of next-generation optical materials and devices, of relevance to new energy conversion materials, nanoscale photocatalysis, or plasmon-enhanced sensors.
机译:纳米级材料吸收,传播和消散能量比其散装对应物非常不同。此外,由具有强耦合电子状态的分子和等离子体材料组成的杂化纳米结构可以产生新的光学状态和衰减途径,其提供额外的手柄,其在复合纳米结构系统中的外部控制能量流动。在这次谈判中,我们讨论了通过局部或扩展平面几何形状支撑的等离子体激发的电磁耦合和相关时间动态的研究。显示了最近的实验结果和用于观察和控制分子激发和等离子体偏振之间的相干的理论分析。进步将探讨混合等离子体结构中的能量耗散过程超快操纵的新方向,以及基于等离子体的电路架构中的超快寻址和切换。还讨论了最近的综合进展在创建混合材料。最终,这些研究可能会影响与新能量转换材料,纳米级光催化或等离子体增强传感器相关的一系列下一代光学材料和装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号