首页> 外文会议>International Conference on Vibration Problems >Development of a Novel Viscoelastic Nanocomposite and Investigation of Its Damping Capacity for Large Frequency Band
【24h】

Development of a Novel Viscoelastic Nanocomposite and Investigation of Its Damping Capacity for Large Frequency Band

机译:新型粘弹性纳米复合材料的研制及其大频带阻尼性能研究

获取原文

摘要

Polymer-based composites work well in both low- and high-temperature range and are suitable for a wide range of excitation frequencies. The high demand for such a material having good large frequency band damping has propelled the research of polymer-based composite with nanoparticle inclusions. Even though different combinations of micro-inclusion-matrix composites are available with good damping properties, a nanoparticle-based composite has wide potential because of the extraordinary behavior of the interphase region. This study explores the possibility of using different combinations and proportions of nanoscale inclusions for vibration control through the use of nanoparticle-reinforced composite materials. The multi-scale modeling of a representative volume element of viscoelastic nanocomposite has been carried out using the representative volume element (RVE) method for unit cell analysis. The periodic force boundary condition is applied to one of the faces of the unit cell at different frequencies. The viscoelastic properties of the polymer are modeled in terms of Prony series. Subsequently, the loss factor (tan δ) is estimated using the phase lag from the stress-strain curve obtained from the FE model simulation. For a quantitative comparison between numerical and experimental results, the fabrication of a nanocomposite beam is carried out (by sonication process) using different combinations of nanoparticle-matrix material with different volume fractions of inclusions in the composite. The cantilever nanocomposite beam is given an initial excitation and the resulting transient displacement is captured by a single point laser. The loss modulus of the nanocomposite is subsequently calculated using the logarithmic decrement technique. FE simulation results and the experimental results match well and show that the damping capacity of homopolymers can successfully increase by adding nanoparticles to control the vibration.
机译:聚合物基复合材料在低温和高温下都能很好地工作,并且适用于各种激励频率。对这种具有良好大频带阻尼的材料的高需求推动了含纳米颗粒包裹体的聚合物基复合材料的研究。尽管微夹杂基复合材料的不同组合具有良好的阻尼性能,但由于界面区域的特殊行为,基于纳米颗粒的复合材料具有广泛的潜力。本研究探索了通过使用纳米颗粒增强复合材料,使用不同组合和比例的纳米级夹杂物进行振动控制的可能性。采用代表体积单元法(RVE)对粘弹性纳米复合材料的代表体积单元进行了多尺度建模。周期力边界条件以不同频率应用于单元的一个面。聚合物的粘弹性用Prony级数来模拟。随后,使用从有限元模型模拟获得的应力-应变曲线的相位滞后来估计损耗因子(tanδ)。为了定量比较数值结果和实验结果,使用纳米颗粒基体材料的不同组合(通过超声处理)制造纳米复合材料梁,复合材料中包含不同体积分数的夹杂物。悬臂梁纳米复合梁被给予初始激励,由此产生的瞬态位移被单点激光捕获。随后使用对数衰减技术计算纳米复合材料的损耗模量。有限元模拟结果与实验结果吻合良好,表明通过添加纳米颗粒来控制振动可以成功地提高均聚物的阻尼能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号