首页> 外文会议>International Workshop on Opto-Electronic Sensor-Based Monitoring in Geo-Engineering >Multiscale aspects of monitoring geo-engineering structural systems: theory and methodology
【24h】

Multiscale aspects of monitoring geo-engineering structural systems: theory and methodology

机译:MultiScale监测地球工程结构系统的各个方面:理论与方法论

获取原文

摘要

The physical meaning of monitored field data is one of the uncertainties that prevails in non-destructive detection (NDD) of defects. This is especially true for the surveillance of geo-engineering systems that are expected to function over an extended period of time such as millions of cycles in fatigue where small defects may grow into critical sizes that will cause damage and render the structure out of commission. A critical issue involved in the development of NDD model is the gradual degradation of the material properties in time. This effect is demonstrated by the dual scale micro/macro cracking model employing the parameter ko that varies statistically in a random manner with normal distribution because material microsctructure interacts with the changing geometry of the growing defect. The mean and deviation of the normal distribution are shown to alter the range of the crack growth range up to the design life. Adjustment of the governing parameters may appear to be unmanageable at first.However, they can be determined after a few trials based on the prescribed design conditions for the tolerable crack size and the elapsed time or cycles that can be pre-set as required by inspection. The procedure is illustrated using the fracture control methodology applied to assure safety of the commercial aircrafts. The inspection period is set by the crack length versus time record that is not so readily and clearly identifiable in geo-engineering systems where the fatigue crack growth behavior is considerably more irregular than that in high strength metal alloys. To this end, monitoring of the local compliance or stiffness may be more appropriate. A dual scale micro/macro crack growth model is then used to translate the data into a form that can define the damage threshold based on the local compliance. The results are valid for any shape of the representative block that contains the defect(s) under sinvestigation. Verification of the proposed procedure canbe demonstrated in the laboratory.
机译:受监控现场数据的物理含义是在缺陷的非破坏性检测(NDD)中占所述不确定性之一。这对于预期在延长的时间内运作的地理工程系统尤其如此尤其如此,例如疲劳中数百万个循环,其中小缺陷可能化成临界尺寸,这将导致损坏并使结构退出委员会。涉及NDD模型的发展中涉及的关键问题是及时逐步降低材料特性。这种效果通过采用具有正常分布的随机方式不同的参数KO的双级微/宏开裂模型证明了这种效果,因为材料微区与变化缺陷的变化几何形状相互作用。正常分布的平均值和偏差显示为改变裂缝增长范围的范围,直至设计寿命。调整可能似乎起初是无法管理的。然而,在基于规定的设计条件的少数试验之后可以根据可容忍的裂缝尺寸和经过经过的时间或循环来确定,​​它们可以根据需要预先设定的规定的设计条件。使用裂缝控制方法来说明该方法以确保商用飞机的安全性。检查期由裂缝长度与时间记录的裂缝长度,在地理工程系统中不太易于识别,其中疲劳裂纹的生长行为比高强度金属合金更不规则。为此,监测局部合规或刚度可能更为合适。然后使用双级微/宏裂缝增长模型将数据转换为可以基于本地合规性定义损坏阈值的形式。结果对于包含缺陷的代表性块的任何形式有效。验证拟议的程序可以在实验室中证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号