【24h】

Multispectral Microimager for Astrobiology

机译:用于天体学的MultiSpectral Microimager

获取原文

摘要

A primary goal of the astrobiology program is the search for fossil records. The astrobiology exploration strategy calls for the location and return of samples indicative of environments conducive to life, and that best capture and preserve biomarkers. Successfully returning samples from environments conducive to life requires two primary capabilities: (1) in situ mapping of the mineralogy in order to determine whether the desired minerals are present; and (2) nondestructive screening of samples for additional in-situ testing and/or selection for return to laboratories for more in-depth examination. Two of the most powerful identification techniques are micro-imaging and visible/infrared spectroscopy. The design and test results are presented from a compact rugged instrument that combines micro-imaging and spectroscopic capability to provide in-situ analysis, mapping, and sample screening capabilities. Accurate reflectance spectra should be a measure of reflectance as a function of wavelength only. Other compact multispectral microimagers use separate LEDs (light-emitting diodes) for each wavelength and therefore vary the angles of illumination when changing wavelengths. When observing a specularly-reflecting sample, this produces grossly inaccurate spectra due to the variation in the angle of illumination. An advanced design and test results are presented for a multispectral microimager which demonstrates two key advances relative to previous LED-based microimagers: (ⅰ) acquisition of actual reflectance spectra in which the flux is a function of wavelength only, rather than a function of both wavelength and illumination geometry; and (ⅱ) increase in the number of spectral bands to eight bands covering a spectral range of 468 to 975 nm.
机译:Astrobiology计划的主要目标是寻找化石记录。天竺葵学探索战略要求对指示有利于生命的环境的样本的位置和返回,以及最佳捕获和保护生物标志物。成功从有利于生命的环境中返回样品需要两个主要能力:(1)原位映射矿物学,以确定所需的矿物质是否存在; (2)用于额外的原位测试和/或选择的样品的非破坏性筛查,以便返回实验室以进行更深入的检查。最强大的识别技术中的两个是微成像和可见/红外光谱。设计和测试结果由紧凑型仪器提出,该仪器结合了微观成像和光谱能力,以提供原位分析,映射和样品筛选能力。精确的反射光谱应该是仅作为波长的函数的反射率。其他紧凑的多光谱微磁像器使用用于每个波长的单独的LED(发光二极管),因此在更换波长时变化照明的角度。当观察反射反射样品时,这导致由于照明角度的变化而产生严重不准确的光谱。提供了先进的设计和测试结果,用于多光谱微内窥镜,其演示了相对于以前基于LED的微航器的两个关键进步:(Ⅰ)获取实际反射光谱,其中磁通量仅是波长的函数,而不是两者的函数波长和照明几何形状; (Ⅱ)频谱带数增加到覆盖468至975nm的光谱范围的八个带的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号