首页> 外文会议>Conference on Smart Structures and Integrated Systems >Active rigidization of carbon-fiber reinforced polymer composites for ultra-lightweight space structures
【24h】

Active rigidization of carbon-fiber reinforced polymer composites for ultra-lightweight space structures

机译:用于超轻型空间结构的碳纤维增强聚合物复合材料的主动刚性化

获取原文

摘要

An active approach for initiating rigidization in carbon-fiber reinforced polymer (CFRP) thermosets links controllable mechanical stiffening to inherent electrical resistivity. With direct applications toward the rigidization of ultra-lightweight, inflatable space structures, temperature-controlled resistive heating is used to create oncommand rigidization. As required by the on-orbit conditions in space, flexible, rigidizable structures demand stable and space-survivable materials that incorporate techniques for providing shape control and structural stiffening. Methods currently employed to achieve a mechanical hardening include many passive techniques: UV curing, sub-Tg hardening, and hydro-gel evaporation. The benefits of a passive system (simplicity, energy efficiency) are offset by their inherent lack of control, which can lead to long curing times and weak spots due to uneven curing. In efforts to significantly reduce the transition time of the composite from a structurally-vulnerable state to a fully-rigidized shape and to increase control of the curing process, an active approach is taken. Specifically, temperature-controlled internal resistive heating initiates thermoset curing in a coated carbon fiber composite to form an electrically-controlled, thermally-activated material. Through controlled heating, this research examines how selective temperature control can be used to prescribe matrix consolidation and material rigidization on two different thermosetting resins, U-Nyte Set 201A and 201B. Feedback temperature control, based on a PID control algorithm, was applied to the process of resistive heating. Precise temperature tracking (less than 1.1癈 RMS or ?.3% error) was achieved for controlled sample heating. Using samples of the thermoset-coated carbon-fiber tow, composite hardening through resistive heating occurred in 24 minutes and required roughly 1 W-hr/inch of electrical energy. The rigidized material was measured to be 14-21 times stiffer in bending than the uncured material. In addition, the cure completion of the resin was measured through differential scanning calorimetry (DSC).
机译:用于启动碳纤维增强聚合物(CFRP)热固性件中刚性化的活性方法链接可控机械加强对固有电阻率。通过直接应用于超轻,充气空间结构的刚性化,使用温度控制的电阻加热来产生onCommand刚性化。根据空间的轨道条件,柔性,刚性的结构的轨道条件需要稳定和空间可生存的材料,该材料包含用于提供形状控制和结构加强的技术。目前用于实现机械硬化的方法包括许多无源技术:UV固化,亚Tg硬化和氢凝胶蒸发。被动系统(简单,能效)的好处因其固有的缺乏控制而抵消,这可能导致由于固化不均匀而导致的长固化时间和弱斑。在努力中显着降低复合材料的转变时间从结构易受损伤的状态到完全刚性的形状并增加固化过程的控制,采用活性方法。具体地,温度控制的内部电阻加热引发涂覆的碳纤维复合物中的热固性固化,形成电控的热活化材料。通过受控加热,该研究检查了选择性温度控制如何在两种不同的热固性树脂,U-NYTE集201a和201b上规定矩阵固结和材料刚性。基于PID控制算法的反馈温度控制应用于电阻加热过程。实现精确的温度跟踪(少于1.1‰或Δ,误差),用于控制样品加热。使用热固性涂覆的碳纤维丝束的样品,通过电阻加热在24分钟内进行复合硬化,并且需要大约1W-HR /英寸的电能。测量刚性化材料比未固化材料更硬于弯曲的14-21倍。此外,通过差示扫描量热法(DSC)测量树脂的固化完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号