首页> 外文会议>Conference on Nanomodeling >Institute for Nuclear Problems, Belarus State University, Bobruiskaya 11, 220050 Minsk, Belarus
【24h】

Institute for Nuclear Problems, Belarus State University, Bobruiskaya 11, 220050 Minsk, Belarus

机译:核问题,白俄罗斯州立大学,Bobruiskaya 11,220050 Minsk,白俄罗斯

获取原文

摘要

The properties of localised dipole emitters in the form of a quantum dot or a colour centre embedded in a crystal environment can be drastically modified by a change in the composition, size and shape of the environment in which the emitter is embedded. Thanks to recent advances in material deposition techniques and lithography, as well as the advances in detection techniques and optical manipulation, experimental work is now capable of revealing a new range of physical phenomena when the typical dimensions are of the order of an optical dipole transition wavelength and below. These advances have arisen at a time of a heightened research effort devoted to the important goal of identifying a qubit and a suitable environment that forms the basis for a scalable hardware architecture for the practical realisation of quantum information processing. A physical system that we have recently put forward as a candidate for such a purpose involves localised emitters in the form of quantum dots or colour centres embedded in a nanocrystal. This suggestion became more persuasive following the success of experiments which, for the first time, were able to demonstrate quantum cryptography using a nitrogen vacancy in a diamond nanocrystal as a single-photon source. It has, however, been realised that a more versatile scenario could be achieved by making use of the interplay between dielectric cavity confinement and dipole orientation. Besides position dependence the main properties exhibit strong dipole orientational dependece suggesting that the system is a possible candidate as a qubit for a scalable hardward architecture for quantum information processing. Cavity confinement can control processes since it can lead to the enhancement and the complete suppression of the de-excitation process, with further control provided by the manipulation of the dipole orientation by optical means. This article is concerned with the modelling of quantum processes for quantum systems localised in artificially fabricated structures made of high conductivity metals and dielectric cavities. The essential features of cavity field confinement in this context are presented and the effects on de-excitation rates are assessed.
机译:在量子点或嵌入在晶体环境中的色心的形式局部偶极发射器的性能可以通过在其中发射器嵌入在环境的组成,尺寸和形状的改变而大幅改变。由于在材料沉积技术和光刻技术,以及在检测技术和光学操纵的进步的最新进展,实验工作是现在能够揭示的物理现象的新范围的时典型尺寸是光学偶极跃迁波长的量级及以下。这些进展都在提高研究工作致力于识别量子位和一个合适的环境的重要目标的时候出现,其形成了可扩展的硬件架构量子信息处理的实际实现的基础。一个物理系统,我们最近提出为这样的目的的候选人包括嵌入在纳米晶体量子点或色心的形式定位发射器。这个建议的实验,其中,在第一时间,能够在纳米晶体金刚石作为单光子源使用氮空位以证明量子密码的成功以下变得更有说服力。它,然而,已经认识到,一个更灵活的方案可能通过使用绝缘腔监禁和偶极取向之间的相互作用来实现。除了位置依赖性的主要性能表现出强的偶极取向dependece表明该系统是可能的候选作为用于量子信息处理可扩展的体系结构hardward一个量子位。腔约束可以控制过程,因为它可以导致增强和去激发过程的完全抑制,与通过光学装置由偶极子方位的操作提供了进一步的控制。本文涉及用于在由高导电性金属和介电腔的人为制造的结构的局部量子系统的量子过程的建模。光场禁闭在这方面的基本特征都和灭磁率的影响进行评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号