首页> 外文会议>Sohn International Symposium on Advanced Processing of Metals and Materials >USING SOHN'S LAW OF ADDITIVE REACTION TIMES FOR MODELING A MULTIPARTICLE REACTOR. THE CASE OF THE MOVING BED FURNACE CONVERTING URANIUM TRIOXIDE INTO TETRAFLUORIDE
【24h】

USING SOHN'S LAW OF ADDITIVE REACTION TIMES FOR MODELING A MULTIPARTICLE REACTOR. THE CASE OF THE MOVING BED FURNACE CONVERTING URANIUM TRIOXIDE INTO TETRAFLUORIDE

机译:使用Sohn的添加反应时间法为模拟多粒反应器。将三氧化铀转化为四氟化物的移动床炉的情况

获取原文

摘要

One of the major issues with multiparticle reactors is to handle their multiscale aspect. For modeling, it usually comes to coupling a reactor model (describing the phenomena at the macroscopic scale) with a so-called grain model (simulating the behavior of a single grain or a particle). An interesting approach proposed by H.Y. Sohn (1978) is to use the law of additive reaction times in order to calculate, approximately but analytically, the reaction rate of a particle in the reactor model. Its great advantage, compared to a numerical grain model, is to drastically reduce the computation time, particularly in the case of complex reactor models. This is the approach we retained for modeling the moving bed furnace, a counter-current gas-solid reactor used in the nuclear fuel-making route for producing uranium tetrafluoride from uranium trioxide. The numerical model we developed is 2-dimensional, steady-state and based on the finite volume method. It describes solid and gas flow, convective, conductive and radiative heat transfers, and six chemical reactions involved in the process. The law of additive reaction times is used to calculate analytically the rate of the three principal gas-solid reactions at every discrete point in the reactor. We have demonstrated the validity of this approach by comparing its results with those calculated from a numerical grain model. Also detailed in the paper are the main results of the moving bed furnace model itself and the possibilities of optimizing the process revealed by the calculations.
机译:多层反应器的主要问题之一是处理其多尺度方面。为了建模,通常通过所谓的晶粒模型(模拟单晶或颗粒的行为)耦合反应器模型(描述宏观刻度的现象)。 H.Y提出的一种有趣的方法。 Sohn(1978)是使用附加反应时间的定律,以便计算,大致但分析地,反应器模型中颗粒的反应速率。与数值晶粒模型相比,其具有很大的优势,是大幅减少计算时间,特别是在复杂的反应堆模型的情况下。这是我们保留用于建模移动床炉的方法,是在核燃料制造途径中用于生产铀四氧化铀铀燃料途径的逆流气体固体反应器。我们开发的数值模型是二维,稳态,基于有限体积法。它描述了固体和气体流动,对流,导电和辐射热转移,以及该方法涉及的六种化学反应。添加剂反应时间的定律用于分析地计算反应器中每个离散点的三个主要气体固体反应的速率。我们通过将其结果与由数值晶粒模型计算的结果进行比较来证明了这种方法的有效性。本文还详述是移动床炉模型本身的主要结果以及优化计算揭示的过程的可能性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号