首页> 外文会议>Conference on Technologies for Optical Countermeasures; Femtosecond Phenomena; and Passive Millimetre-Wave and Terahertz Imaging >Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate
【24h】

Mid-infrared absorption spectroscopy of methane across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate

机译:基于非周期性抛光锂铌酸锂的宽带飞秒光学参数振荡器,甲烷中红外吸收光谱法横跨14.4℃。

获取原文

摘要

Conventionally optical parametric oscillators (OPOs) have been used in high-resolution absorption-spectroscopy as narrow-band tuneable sources where the measurement resolution is determined by the OPO output linewidth, rather than the wavelength resolution of the detector. In contrast, the absorption spectroscopy of gases and other media has for many years been carried out using instruments such as Fourier-transform infrared (FTIR) spectrometers or high-resolution diffraction-grating-based tuneable monochromators. These techniques commonly utilise broadband thermal sources with highly-divergent illumination beams limiting their use in remote sensing or fibre delivery applications. The work presented here reports a new approach to FTIR spectroscopy based around a novel Tirsapphire pumped, signal-resonant OPO that uses a 10mm crystal of aperiodically-poled lithium niobate (APPLN) as the gain medium producing an idler output covering a 3.2-3.85 μm tuning range with a typical full-width-half-maximum bandwidth of 85 nm. Methane was used to demonstrate the technique since the OPO tuning range almost completely covers the strongest mid-infrared absorption lines of methane from 3.0 -3.7 μm (limited only by the available resonator optics). A double-beam Michelson interferometer was built around the OPO idler beam using a helium-neon laser as the second beam to self-calibrate each trace. Course tuning of the OPO resulted in the measurement of absorption data across the 3.2-3.85 μm tuning range using methane held at pressures ranging from 2000mbar down to 25mbar. A maximum resolution of around 1cm~(-1) was achieved using a simple rapidly scanning mirror assembly indicating that with further development this approach could yield very high-resolution measurements.
机译:传统上光学参数振荡器(OPO)已被用于高分辨率吸收光谱,作为窄带可调源,其中测量分辨率由OPO输出线宽确定,而不是检测器的波长分辨率。相反,气体和其他介质的吸收光谱具有多年的使用诸如傅立叶变换红外(FTIR)光谱仪或基于高分辨率衍射光栅的可调单色器的仪器进行了多年。这些技术通常利用具有高度发散的照明光束的宽带热源,限制其在遥感或光纤输送应用中的使用。这里提出的工作报告了基于新的Tirsapphire泵浦的FTIR光谱的新方法,其使用由覆盖惰轮输出的增益介质为3.2-3.85μm的增益介质来围绕一种新的Tirsapphire泵送的信号共振OPO。调整范围内具有85 nm的典型全宽半最大带宽。甲烷用于展示该技术,因为OPO调谐范围几乎完全覆盖3.0-3.7μm的最强的中红外吸收线(仅由可用的谐振器光学器件限制)。使用氦氖激光器作为第二梁以自校准每条迹线,围绕Opo惰轮束构建双梁迈克隆干涉仪。 OPO的课程调整导致3.2-3.85μm调谐范围的吸收数据的测量,使用甲烷在压力下,从2000mbar向下到25mbar。使用简单的快速扫描镜组件实现了大约1cm〜(-1)的最大分辨率,表明该方法进一步发展,该方法可以产生非常高分辨率的测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号