首页> 外文会议>Pacific Symposium on Biocomputing >PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT
【24h】

PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT

机译:使用电子医疗纪录型机学习预测建模医院入院率 - 以西奈山心力衰竭队列为例

获取原文
获取外文期刊封面目录资料

摘要

Reduction of preventable hospital readmissions that result from chronic or acute conditions like stroke, heart failure, myocardial infarction and pneumonia remains a significant challenge for improving the outcomes and decreasing the cost of healthcare delivery in the United States. Patient readmission rates are relatively high for conditions like heart failure(HF)despite the implementation of high-quality healthcare delivery operation guidelines created by regulatory authorities. Multiple predictive models are currently available to evaluate potential 30-day readmission rates of patients. Most of these models are hypothesis driven and repetitively assess the predictive abilities of the same set of biomarkers as predictive features. In this manuscript, we discuss our attempt to develop a data-driven, electronic-medical record-wide(EMR-wide)feature selection approach and subsequent machine learning to predict readmission probabilities. We have assessed a large repertoire of variables from electronic medical records of heart failure patients in a single center. The cohort included 1, 068 patients with 178 patients were readmitted within a 30-day interval (16.66% readmission rate). A total of 4, 205 variables were extracted from EMR including diagnosis codes(n=1, 763), medications(n=1,028), laboratory measurements(n=846), surgical procedures(n=564)and vital signs(n=4). We designed a multistep modeling strategy using the Na?ve Bayes algorithm. In the first step, we created individual models to classify the cases(readmitted)and controls(non-readmitted). In the second step, features contributing to predictive risk from independent models were combined into a composite model using a correlation-based feature selection(CFS)method. All models were trained and tested using a 5-fold cross-validation method, with 70% of the cohort used for training and the remaining 30% for testing. Compared to existing predictive models for HF readmission rates(AUCs in the range of 0.6-0.7), results from our EMR-wide predictive model(AUC=0.78; Accuracy=83.19%)and phenome-wide feature selection strategies are encouraging and reveal the utility of such data-driven machine learning. Fine tuning of the model, replication using multi-center cohorts and prospective clinical trial to evaluate the clinical utility would help the adoption of the model as a clinical decision system for evaluating readmission status.
机译:减少由中风,心力衰竭,心肌梗死和肺炎等慢性或急性条件引起的可预防医院入院,仍然是提高结果的重要挑战,并降低美国医疗保健送货的成本。患者入院率与心力衰竭(HF)等条件相对较高,尽管实施了监管机构创建的高质量医疗保健递送操作指南。目前可获得多种预测模型来评估患者的潜在30天的阅览率。这些模型中的大多数是假设驱动和重复地评估与预测特征相同的生物标志物的预测能力。在这份手稿中,我们讨论我们试图开发数据驱动的电子医疗历史(EMR-宽)特征选择方法和后续机器学习以预测读入概率。我们已经评估了一系列心力衰竭患者的电子医疗记录的大型曲目。在30天的间隔内被提出1,068名患者的队列1,068名患者(入院率为16.66%)。从包括诊断码(n = 1,763),药物(n = 1,028),实验室测量(n = 846),外科手术(n = 564)和生命符号(n = 4)。我们使用NA ve Bayes算法设计了多步建模策略。在第一步中,我们创建了个别模型来对案例(Readmited)和控件进行分类(未读取)。在第二步中,使用基于相关的特征选择(CFS)方法将从独立模型的预测风险的功能组合成复合模型。所有型号都使用5倍交叉验证方法进行培训和测试,其中70%的队列用于训练,其余30%用于测试。与HF Readmission率的现有预测模型相比(AUC在0.6-0.7的范围内),来自我们的EMR-宽的预测模型(AUC = 0.78;精度= 83.19%)和苯妥的特征选择策略是鼓励和揭示的这种数据驱动机器学习的效用。微调模型,使用多中心队列和前瞻性临床试验来评估临床实用性的复制将有助于采用模型作为评估入院地位的临床决策系统。

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号