首页> 外文会议>Latin American and the Caribbean Petroleum Engineering Conference >Analytical Modeling of 1-D n-Component Miscible Displacement of Ideal Fluids
【24h】

Analytical Modeling of 1-D n-Component Miscible Displacement of Ideal Fluids

机译:1-D N组件混溶性位移的分析模型

获取原文

摘要

Enhanced Oil Recovery (EOR) methods include injection of different fluids into reservoirs to improve oil displacement. These processes can be divided into two main categories: thermodynamical and hydrodynamical ones. Analytical models for 1-D displacement of oil by gas have been developed during the last 15 years. It was observed from semi- analytical and numerical experiments that several thermodynamic features of the process (MMP, key tie lines, etc) are not dependent of transport properties. The model for one-dimensional displacement of oil by miscible fluids is analyzed in this paper. The main result is the splitting of thermodynamical and hydrodynamical parts in the EOR mathematical model. The introduction of a potential associated with one of the conservation laws and its use as an independent variable reduces the number of equations. The reduced auxiliary system contains just thermodynamical (equilibrium fractions of each phase, sorption isotherms) variables and the lifting equation contains just hydrodynamical (phases relative permeabilities and viscosities) parameters while the initial EOR model contains both thermodynamical and hydrodynamical functions. So, the problem of EOR displacement was divided into two independent problems: one thermodynamical and one hydrodynamical. Therefore, phase transitions occurring during displacement are determined by the auxiliary system, i.e. they are independent of hydrodynamic properties of fluids and rock. For example, the minimum miscibility pressure (MMP) is independent of relative permeabilities and phases viscosities. The splitting technique may be used for the solution of Riemann problems and for non-self-similar displacement of oil by rich gas solvent slug with lean gas drive considering ideal behavior of the fluids, i.e. constant distribution coefficients. For 3-D displacements, the splitting is valid if and only if the total mobility is constant. It allows the application of the obtained 1-D analytical solutions in streamline simulators. The technique reduces significantly the amount of calculations for sensitivity study of gasflooding processes with respect to transport properties: auxiliary thermodynamic problem may be solved once for given reservoir and injected compositions; variation of relative permeabilities and viscosities should be performed just in the solution of one transport equation.
机译:增强的采油(EOR)方法包括将不同的流体注入储层以改善油位移。这些过程可分为两个主要类别:热力学和流体动力学。在过去的15年里,已经开发了通过气体1级石油排量的分析模型。从半分析和数值实验中观察到,该过程的几个热力学特征(MMP,关键系数等)不依赖于运输特性。本文分析了通过混溶性流体的一维位移的模型。主要结果是eOR数学模型中热力学和流体动力学部分的分裂。引入与保护法之一相关的潜力及其作为独立变量的用途减少了方程数。减的辅助系统仅包含热力学(每个相的平衡级数,吸附等温线)变量和提升方程仅包含流体动力学(相位相对渗透率和粘度)参数,而初始EOR模型包含热力学和流体动力学功能。因此,EOR位移的问题分为两个独立问题:一个热力学和一个流体动力学。因此,在位移期间发生的相变由辅助系统确定,即它们与流体和岩石的流体动力学性质无关。例如,最小混溶性压力(MMP)与相对渗透率和阶段粘度无关。分裂技术可用于瑞马问题的解决方案和通过富含气体溶剂块与贫气体驱动的富燃气溶剂块,考虑到流体的理想行为,即恒定分布系数。对于3-D位移,拆分是有效的,如果且仅当总移动性是恒定的。它允许在流线模拟器中应用获得的1-D分析解决方案。该技术显着降低了汽油过程对运输性能的敏感性研究的计算量:对于给定的储存器和注射组合物,可以解决一次辅助热力学问题;仅在一个传送方程的解决方案中进行相对渗透率和粘度的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号