首页> 外文会议>American Chemical Society National Meeting >EFFECT OF MICROFLUIDIC MIXING ON NUTRITIENT UPTAKE OF MICROORGANISMS IN A MINIATURIZED MICROBIAL FUEL CELL
【24h】

EFFECT OF MICROFLUIDIC MIXING ON NUTRITIENT UPTAKE OF MICROORGANISMS IN A MINIATURIZED MICROBIAL FUEL CELL

机译:微流体混合对小型微生物燃料电池中微生物营养吸收的影响

获取原文

摘要

Researchers in the microfluidics community have focused on using microfluidics for lab-on-a-chip applications including biomedical devices, environmental sensors, mixers, and fuel cells with very small footprints over the past few years . Furthermore, hydrodynamic focusing of one laminar stream by another has inspired new approaches for separations, biosensors, and cell analysis . For example, straight diagonal grooves on the top and bottom of the channel are used to wrap the sample fluid with sheath fluid. Passing through more grooves, the sheath fluid moves toward the far side of the sample stream and sample stream becomes focused more toward the center of the channel. The Mixing limitations at low Reynolds numbers have been another area of microfluidics that have received a great deal of attention. Microorganisms experience a very different environment dominated by viscous forces at low Reynolds number that make mixing difficult. They could have a significant contribution to local mixing at cellular scale but their impact on global mixing is not still well understood. The fluid flows generated by the movement of flagella of microorganisms play a central role in nutrient uptake (limited by diffusion) of solutes by single cells and multi-cellular organisms. Microfluidic devices can take advantage of these effects in order to increase mixing in microfluidic channels and to direct material transport using either cell cultures or device geometry.
机译:微流体群落的研究人员专注于使用微流体,用于在过去几年中使用生物医学装置,环境传感器,混合器和具有非常小的占地面积的生物医学装置,环境传感器,混合器和燃料电池。此外,另一个流体流反射另一个层流的流体动力学聚焦对分离,生物传感器和细胞分析的新方法感受到了新的方法。例如,通道顶部和底部的直线对角线槽用于将样品流体用鞘液包裹。通过更多的凹槽,鞘流朝向样品流的远侧移动,并且样品流变得更加朝向通道的中心。低雷诺数的混合局限性是另一个微流体的另一个区域,这些区域已经受到了极大的关注。微生物在低雷诺数的粘性力量中经历了非常不同的环境,使混合困难。它们可以对蜂窝尺度的局部混合产生重大贡献,但它们对全球混合的影响尚不顺利。微生物鞭毛运动产生的流体流动在单细胞和多细胞生物体的营养吸收(通过扩散限制)中发挥着核心作用。微流体装置可以利用这些效果,以便在微流体通道中增加混合并使用细胞培养物或装置几何形状引导材料运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号