首页> 外文会议>American Society of Mechanical Engineers/JSME Pressure Vessels and Piping Conference >A METHOD FOR APPLYING AUTOMATIC TEMPERATURE CONTROL TO THE TRANSIENT FINITE ELEMENT ANALYSIS OF A PRESSURE VESSEL UNDERGOING POSTWELD HEAT TREATMENT
【24h】

A METHOD FOR APPLYING AUTOMATIC TEMPERATURE CONTROL TO THE TRANSIENT FINITE ELEMENT ANALYSIS OF A PRESSURE VESSEL UNDERGOING POSTWELD HEAT TREATMENT

机译:一种将自动温度控制应用于邮收热处理的压力容器瞬态有限元分析的方法

获取原文

摘要

For complex finite element problems it is often desirable to prescribe boundary conditions that are difficult to quantify. The analysis of a pressure vessel undergoing postweld heat treatment (PWHT) is an example of such a problem. The PWHT process is governed by Code rules, but the temperature and gradient requirements they impose are not sufficient to precisely describe the complete vessel temperature profile. The imposition of such a profile in the analysis results in uncertainty and errors. A suitable but difficult approach is to specify heater power instead of temperatures, letting the solver determine the temperature profile. Unfortunately, the individual heater power levels necessary to meet the Code requirements are usually not known in advance. Determining the power levels necessary is particularly difficult if a transient solution is required. A means of actively controlling the heaters during the FEA solution is requirement for this approach. A simple and adaptive control algorithm was incorporated into the FEA solver via its scripting capability. Heat flux boundary conditions (heater power) were applied instead of transient temperature boundary conditions. Heater power levels were optimized to achieve predetermined time/temperature goals as the solution proceeded. The algorithm described was successfully applied to a pressure vessel PWHT with 14 zones of control. The approach may be adapted to other problems and boundary conditions.
机译:对于复杂的有限元件问题,通常希望规定难以量化的边界条件。经过折叠热处理的压力容器(PWHT)的分析是这种问题的一个例子。 PWHT过程由代码规则管理,但它们施加的温度和梯度要求不足以精确地描述完整的血管温度曲线。在分析中施加这样的简档导致不确定性和错误。一种合适但困难的方法是指定加热器功率而不是温度,让求解器确定温度曲线。不幸的是,通常预先知道满足代码要求所需的单独加热器功率水平。如果需要瞬态解决方案,确定所需的功率水平是特别困难的。在FEA解决方案期间主动控制加热器的手段是这种方法的要求。通过其脚本能力将简单和自适应的控制算法结合到FEA求解器中。应用热量边界条件(加热器功率)代替瞬态温度边界条件。优化加热器功率水平以实现预定的时间/温度目标,因为解决方案进行。所描述的算法成功地应用于具有14个控制区域的压力容器PWHT。该方法可以适应其他问题和边界条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号