首页> 外文会议>CIGRE Session >Limits of allowed ampacity of EHV/UHV overhead lines with ACSR and ACCC conductors, in the specific climatic conditions of the Slovak Republic
【24h】

Limits of allowed ampacity of EHV/UHV overhead lines with ACSR and ACCC conductors, in the specific climatic conditions of the Slovak Republic

机译:在斯洛伐克共和国的特定气候条件下与ACSR和ACCC导体允许允许的eHV / UHV架空线的允许性不足的限制

获取原文

摘要

Overhead lines of SR have so far been built exclusively on the traditional ACSR rope conductors. Their mechanical and electrical properties are nor optimal either efficient in terms of increasing transmission capability OHL-overhead lines, intended mainly for the power output from large nuclear sources, but neither for our transit line integrated into ENTSO-E. This is due to a combination of material constants of steel and aluminium, and because of hysteresis of shape stress-strain diagram of the combined ACSR rope structure. In the inelastic area arise permanent geometric subsidence and metallurgical creep of ACSR rope conductors. So while their long-term loading this would occur in: gain of elongation +Δε_(ACSR) (%), gain maximum sag +Δf_(ACSR_max) (m), decrease the minimum sparkover distance of ACSR phases from the ground -Δh_(ACSR_min) (m), and thus by forced reducing the allowed current capacity -ΔI_(ACSR_allowed) (A). This is reflected by decreasing the transmission capability -ΔS_(OHL) (MVA) OHL, which may be lower, as derived from the instantaneous allowed current capacity ACSR conductors I_(ACSR_allowed) (A), at less than the minimum allowed spark-over distance h_(ACSR_min) (m). This presents a potential problem in elderly OHL designed according to standard [2], which should be in accordance with [3] operate in permanent allowed conductor temperature T_(cond_allowed) = 80 (°C). OHL transmission capability is therefore inter alia function of distance hACSR_min (m) lower phases from the ground, and must be able to predict at the OHL design stage, because latently growing by permanent inelastic elongation of ACSR conductors throughout the lifetime of the OHL. Replacement of steel core in ACSR conductor by composite core in ACCC conductor, led to the decrease of the sag Δf_(ACCC_max) (m) in area behind knee-point-temperature, removed the magnetization non-existent steel core, and remove the AC resistance increase of steel core magnetization ACSR conductor ΔR_(ACSR_ac) = 0 (Ω.km~(-1)), so not incurred reduce the transmission capability of the OHL -ΔS_(OHL) (MVA) as in conventional ACSR rope conductors.
机译:到目前为止,SR的架空线条仅在传统的ACSR绳索导线上进行。它们的机械和电气性能也不是最佳的,而不是升高的传输能力OHL-obl-opshead线,主要用于大型核来源的功率输出,但对于我们的传输线集成到ETENO-E中。这是由于钢和铝材料常数的组合,并且由于组合ACSR绳索结构的形状应力 - 应变图的滞后。在非弹性区域出现永久几何沉降和ACSR绳索导体的冶金蠕变。因此,虽然它们的长期加载这将发生在:伸长率+Δε_(ACSR)(ACSR)(%),增益最大SAG +ΔF_(ACSR_MAX)(M),从地面 - ΔH_降低ACSR阶段的最小火花距离( ACSR_MIN)(M),因此通过强制减少允许的电流容量-ΔI_(ACSR_ALLOWED)(A)。这通过减少可能较低的传输能力-ΔS_(OHL)(MVA)(MVA)(MVA)(MVA)(MVA)(MVA)(MVA)(MVA)(MVA)(MVA)(ACSR_ALLOWED)(A)的衍生而成,以小于最小允许的火花距离H_(ACSR_MIN)(M)。这提出了根据标准[2]设计的老年人潜在的问题,这应该是根据[3]在永久允许的导体温度T_(Cond_Alowed)= 80(°C)中操作。因此,OHL传输能力尤其是距离HACSR_MIN(M)较低的阶段的函数,并且必须能够在OHL设计阶段预测,因为通过在OHL的整个寿命中通过ACSR导体的永久性非弹性伸长率延伸。在ACSR导体中替换ACSR导体中的钢芯,导致膝关节温度后面的区域的SAGΔF_(ACCC_MAX)(M)降低,取出了磁化不存在钢芯,并取下了AC钢芯磁化ACSR导体ΔR_(ACSR_AC)= 0(ω.km〜(-1))的电阻增加,因此不产生OHL-ΔS_(OHL)(MVA)的传输能力,如在传统的ACSR绳索导线中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号