首页> 外文会议>Solid Freeform Fabrication Symposium >HYDROGELS IN STEREOLITHOGRAPHY
【24h】

HYDROGELS IN STEREOLITHOGRAPHY

机译:立体刻录中的水凝胶

获取原文

摘要

The use of stereo lithography (SL) for fabricating complex three-dimensional (3D) tissue engineered scaffolds of aqueous poly(ethylene glycol) (PEG) hydrogel solutions is described. The primary polymer used in the study was PEG-dimethacrylate (PEG-dma) with an average molecular weight (M_W) of 1000 in distilled water with the photoinitiator Irgacure 2959 (I-2959). Successful layered manufacturing (LM) with embedded channel architecture required investigation of the photopolymerization characteristics of the PEG solution (measured as hydrogel thickness or cure depth) as a function of photoinitiator concentration and laser energy dosage for a specific photoinitiator type and polymer concentration in solution. Hydrogel thickness was a strong function of PI concentration and energy dosage. Curves of hydrogel thickness were utilized to successfully plan, perform, and demonstrate layered manufacturing of highly complex hydrogel scaffold structures, including structures with internal channels of various orientations. Successful fabrication of 3D, multi-layered bioactive PEG scaffolds containing cells was accomplished using a slightly modified commercial SL system (with 325 nm wavelength laser) and procedure. Human dermal fibroblast (HDF) cells were encapsulated in PEG hydrogels using small concentrations (~5 mg/ml) of acryloyl-PEG-RGDS (M_W 3400) added to the photopolymerizable PEG solution to promote cell attachment. HDF cells were combined with the PEG solution, photocrosslinked using SL, and successfully shown to survive the fabrication process. The combined use of SL and photocrosslinkable biomaterials such as PEG makes it possible to fabricate complex 3D scaffolds that provide site-specific and tailored mechanical properties (i.e., multiple polymer materials) with a polymer matrix that allows transport of nutrients and waste at the macroscale and facilitates cellular processes at the microscale through precisely placed bioactive agents.
机译:描述了使用立体光刻(SL)制造复杂的三维(3D)组织工程化支架的水性聚(乙二醇)(PEG)水凝胶溶液。该研究中使用的主要聚合物是PEG-二甲基丙烯酸酯(PEG-DMA),其平均分子量(M_W)为1000,蒸馏水,光引发剂IRGACURE 2959(I-2959)。成功的分层制造(LM)具有嵌入式信道架构所需的PEG溶液(作为水凝胶厚度或固化深度)的光聚合特性作为光引发剂浓度和用于溶液中的聚合物浓度的激光能量剂量的功能的光聚合特性。水凝胶厚度是PI浓度和能量剂量的强函数。水凝胶厚度的曲线用于成功地规划,执行和证明具有高度复杂的水凝胶支架结构的层状制造,包括具有各种取向的内部通道的结构。使用略微改性的商业SL系统(具有325nm波长激光)和程序,完成含有细胞的3D的成功制造,多层生物活性PEG支架。使用添加到可光聚合的PEG溶液中的小浓度(约5mg / ml)的小浓度(约5mg / ml)包封在PEG水凝胶中的人皮肤成纤维细胞(HDF)细胞包封在可光聚合的PEG溶液中以促进细胞附着。将HDF细胞与PEG溶液组合,使用SL的光源光源,并成功地显示以存活制造过程。 SL和光胶质链接的生物材料如PEG的组合使用使得可以制造复杂的3D支架,其提供具有聚合物基质的位点特异性和定制的机械性能(即,多种聚合物材料),该聚合物基质允许在宏观上运输营养物质和废物通过精确放置的生物活性剂促进微米的细胞过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号