首页> 外文会议>IEEE/ACS International Conference on Pervasive Services >Opportunities for grid computing in bio- and health-informatics
【24h】

Opportunities for grid computing in bio- and health-informatics

机译:生物与健康信息学中网格计算的机会

获取原文

摘要

Summary form only given. Over the past few years the popularity of the Internet has been growing by leaps and bounds. However, there comes a time in the life of a technology, as it matures, where questions about its future need to be answered. The Internet is no exception to this case. Often called the "next big thing" in global Internet technology, grid computing is viewed as one of the top candidates that can shape the future of the Internet. Grid computing takes collective advantage of the vast improvements in microprocessor speeds, optical communications, raw storage capacity, World Wide Web and the Internet that have occurred over the last five years. Grid technology leverages existing resources and delays the need to purchase new infrastructure. With demand for computer power in industries like the life sciences and health informatics almost unlimited. Grid's ability to deliver greater power at less cost gives the technology tremendous potential. Ultimately the grid must be evaluated in terms of the applications, business value, and scientific results that it delivers, not its architecture. Biology provides some of the most important, as well as most complex, scientific challenges of our times. These problems include understanding the human genome, discovering the structure and functions of the proteins that the genes encode, and using this information efficiently for drug design. Most of these problems are extremely intensive from a computational perspective. One of the principal design goals for the grid framework is the effective logical separation of the complexities of programming a massively parallel machine from the complexities of bioinformatics computations through the definition of appropriate interfaces. Encapsulation of the semantics of the bioinformatics computations methodologies means that the application can track the evolution of the machine architecture and explorations of various parallel decomposition schemes can take place with minimal intervention from the domain experts or the end users. For example, understanding the physical basis of protein function is a central objective of molecular biology. Proteins function through internal motion and interaction with their environment. An understanding of protein motion at the atomic level has been pursued since the earliest simulations of their dynamics. When simulations can connect to experimental results, the microscopic examinations of the different processes (via simulation) acquire more credibility and the simulation results can then help interpret the experimental data. Improvements in computational power and simulation methods facilitated by the grid framework could to lead to important progress in studies of protein structure, thermodynamics, and kinetics. This talk overviews the state of play and show how the grid can change the competitive landscape and, thus, become a potential "disruptive" technology.
机译:摘要表格仅给出。在过去的几年里,互联网的普及已经突飞猛进。但是,在技术的生命中有一段时间,因为它已经成熟,关于其未来的问题需要回答。互联网对这种情况不同。通常被称为全球互联网技术中的“下一个大事”,网格计算被视为可以塑造互联网未来的顶级候选者之一。网格计算采取了在过去五年中发生的微处理器速度,光通信,原始存储容量,万维网和互联网的巨大改进的集体优势。网格技术利用现有资源,延误需要购买新基础架构。随着生命科学和健康信息学的行业的需求,几乎无限制。电网以较低成本提供更大权力的能力使技术巨大潜力。最终,必须在应用程序,业务价值和科学结果方面进行评估网格,而不是其架构。生物学提供了一些最重要的,以及最复杂的,是我们时代的最复杂的科学挑战。这些问题包括了解人类基因组,发现该基因编码的蛋白质的结构和功能,并有效地使用该信息用于药物设计。这些问题中的大多数是从计算的角度来看的。网格框架的主要设计目标之一是通过对生物信息化计算的复杂性通过适当的接口的定义来编程大型平行机器的复杂性的有效逻辑分离。封装生物信息化计算方法的语义意味着应用程序可以跟踪机器架构的演变,并且可以使用域专家或最终用户的介入最小的干预来进行各种并行分解方案的探索。例如,了解蛋白质功能的物理基础是分子生物学的中心目标。蛋白质通过内部运动和与环境的互动函数。自最早模拟其动态以来,已经追求了对原子水平的蛋白质运动的理解。当模拟可以连接到实验结果时,不同过程的微观检查(通过模拟)获取更多可信度和模拟结果,然后可以帮助解释实验数据。电网框架促进的计算能力和仿真方法的改进可以导致蛋白质结构,热力学和动力学研究的重要进展。这次谈话概述了播放状态,并展示网格如何改变竞争风景,从而成为潜在的“破坏性”技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号