【24h】

PHOTOSYSTEM II-BASED BIOSENSORS FOR PHYTOREMEDIATION

机译:用于植物修复的基于光系统II的生物传感器

获取原文

摘要

Phenylurea, triazine and diazine represent economically very important compounds since they are used in chemical, pharmaceutical and agricultural industries. Although new herbicides are now available, they still represent the basic products for weed control. All the compounds of these classes constitute about 40 % of all herbicides used at present in agriculture, amounting to thousands of tons all over the world. These compounds are absorbed through the roots and then translocated via the xylem to the leaves. Some of these herbicides are directly absorbed by the leaves. They act by inhibiting photosynthesis at the level of the photosystem II-dependent electron transfer and further block production of ATP and NADPH. In soils, these compounds are quite persistent and they are adsorbed on soil colloids and on organic substances in proportion to the cation exchange capacity of these soil constituents. Bioremediation by photosynthetic plants (phytoremediation) is a well-established method to recover herbicide-polluted soils. The ideal plant for phytoremediation should exhibit the following characteristics: (ⅰ) be resistant to the herbicides, (ⅱ) to allow herbicide translocation to the leaf: (ⅲ) to be able to degrade the herbicide. We can distinguish naturally resistant plants and mutants of sensitive species. In naturally resistant plants the mechanisms of resistance include a slow translocation into the chloroplast, high protein repair turnover, immobilization and detoxication by endogenous enzymes through conjugation and/or degradation. Glutathione S-transferases are involved in the detoxication of herbicides. Often, more than one mechanism is active at the same time. Moreover, prolonged agronomic use of PSII inhibitors, specifically triazine herbicides, has resulted in the evolution of mutants of sensitive species. In this case, the predominant basis for resistance is a single nucleotide substitution in the chloroplast psbA gene encoding the D1 protein, which precludes the binding of herbicide to the protein. However, resistance of mutated biotypes has also been attributed to modifications in the activities of the glutathione enzyme.
机译:苯脲,三嗪和屠宰物代表经济上非常重要的化合物,因为它们用于化学,制药和农业产业。虽然现在提供新的除草剂,但它们仍然代表杂草控制的基本产品。这些课程的所有化合物都构成了目前农业目前的所有除草剂的40%,达到全球数千吨。这些化合物通过根吸收,然后通过木瓜粘附到叶子中。这些除草剂中的一些直接被叶子吸收。它们通过抑制光合合作在照相依赖的电子转移水平和ATP和NADPH的进一步块产生的水平下。在土壤中,这些化合物非常持久性,并且与这些土壤成分的阳离子交换能力成比例地吸附在土壤胶体上和有机物质上。光合植物(植物修复)的生物修复是一种成熟的回收除草剂污染土壤的方法。用于植物化的理想植物应表现出以下特征:(Ⅰ)对除草剂有抵抗力,(Ⅱ)以允许除草剂易位到叶片:(Ⅲ)能够降解除草剂。我们可以区分敏感物种的天然抗性植物和突变体。在天然抗性植物中,抵抗机制包括通过缀合和/或降解通过内源酶进入叶绿体,高蛋白质修复周转,固定和解毒的缓慢的易位。谷胱甘肽S转移酶参与除草剂的解毒。通常,多个机制同时处于活跃状态。此外,延长了PSII抑制剂,特别是三嗪除草剂的农艺用途导致敏感物种突变体的演变。在这种情况下,抗性的主要基础是编码D1蛋白的叶绿体PSBA基因中的单个核苷酸取代,其排除了除草剂与蛋白质的结合。然而,突变的生物型抗性也归因于谷胱甘肽酶的活性的修饰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号