首页> 外文会议>ASME Turbo Expo >COMBUSTION PROCESS OPTIMIZATION USING EVOLUTIONARY ALGORITHM
【24h】

COMBUSTION PROCESS OPTIMIZATION USING EVOLUTIONARY ALGORITHM

机译:燃烧过程优化使用进化算法

获取原文

摘要

Flame stabilization in a swirl-stabilized combustor occurs in an aerodynamically generated recirculation region which is a result of vortex breakdown. The characteristics of the recirculating flow are dependent on the swirl number and on axial pressure gradients. Coupling to downstream pressure pulsations is also possible. Flame stability and emission formation depend on flow and mixing properties. The mixing properties of the investigated burner can be influenced by the position and the amount of fuel injection into the burner. The fuel injection is controlled by two different setups using (a) 8 proportional valves to adjust the mass flow for each fuel injector individually or using (b) 16 digital valves to include or exclude fuel injectors along the distribution holes. The objectives are the minimization of NO{sub}x emissions and the reduction of pressure pulsations of the flame. These two objectives are conflicting, affecting the environment and the lifetime of the combustion chamber, respectively. A multi-objective evolutionary algorithm is applied to optimize the combustion process. Each optimization run results in an approximation of the Pareto front by a set of solutions of equal quality, each representing a different compromise between the conflicting objectives. One compromise solution is selected with NO{sub}x emissions reduced by 30%, while mainaining the pulsation level of the given standard burner design. Chemiluminescence pictures of this solution showed that a more uniform distribution of heat release in the re-circulation zone was achieved. The results were confirmed in high pressure single burner tests. The suggested fuel injection pattern has been successfully implemented in engines with sufficient stability margins and good operational flexibility. This paper shows the careful development process from lab scale tests to full scale pressurized tests.
机译:在旋流稳定的燃烧器中的火焰稳定发生在空气动力学产生的再循环区域中,这是涡旋击穿的结果。再循环流动的特性取决于涡流数和轴向压力梯度。还可以耦合到下游压力脉动。火焰稳定性和发射形成取决于流动和混合性能。所研究的燃烧器的混合性能可以受到燃烧器中的位置和燃料量的影响。燃料喷射由两个不同的设置控制,使用(a)8比例阀来调节每个燃料喷射器的质量流量单独或使用(b)16数字阀以包括或排除沿分配孔的燃料喷射器。目标是最小化NO {Sub} x排放和火焰的压力脉动的减少。这两个目标分别冲突,影响了燃烧室的环境和寿命。应用多目标进化算法以优化燃烧过程。每个优化运行导致帕累托前面的近似值通过一组相同质量的解决方案,每个解决方案都代表冲突目标之间的不同折衷。选择一个折衷解决方案,没有{Sub} x排放减少30%,同时担将给定标准燃烧器设计的脉动水平。该解决方案的化学发光图片表明,实现了再循环区中的热释放的更均匀分布。结果在高压单燃烧器测试中确认。建议的燃料喷射图案已成功地在发动机中实现,具有足够的稳定性边缘和良好的操作灵活性。本文显示了实验室规模测试到全规模加压测试的仔细开发过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号