首页> 外文会议>Geothermal Resources Council Annual Meeting >Hydro-Shearing and Hydraulic Fracturing for Enhanced Geothermal Systems in Archetypical Normal, Strike-Slip, and Thrust Faulting Terrains
【24h】

Hydro-Shearing and Hydraulic Fracturing for Enhanced Geothermal Systems in Archetypical Normal, Strike-Slip, and Thrust Faulting Terrains

机译:水力剪切和液压压裂,用于增强型正常,滑行和推力故障地形的加强地热系统

获取原文

摘要

This paper advances understanding of the feasible space of Enhanced Geothermal Systems (EGS) by evaluating the effects of in situ stress, natural fracture patterns, and hydraulic stimulation on processes of geothermal conduction and convection. EGS require stimulation techniques to improve fracture network transmissivity in sparsely fractured rock masses in a way that balances conductive and convective heat transport. Three archetypical terrains with in situ stress typical of normal, strike-slip and thrust faulting regions of North America are hydraulically fractured and hydro-sheared in Discrete Fracture Network (DFN) models so that the total available fracture area and fracture spacing at depth become sufficient for geothermal energy production. The adequacy of fracture spacing and area was determined using analytic equations for parallel fractures of uniform aperture which are considered a best case scenario. Connected fracture networks are developed using simulation of both hydro-shearing of existing natural fractures and induced tensile fracturing. The average initial temperature of the reservoir was required to be 200°C and this constraint along with the regional thermal gradient was used to define the depth of the geothermal reservoir. Pumping pressures and durations required to develop and later utilize these systems are discussed. Low geothermal gradients and high minimum stress values limit the practicality of creating EGS resources in major thrust faulting regions of the United States. Development of EGS in normal and strike-slip faulting regions seems to be more tractable, but potentially requires horizontal drilling for both the stimulation well and any injection or production wells. Differences in rock lithology affect constraints on fracture spacing. Designing an appropriate stimulation program that balances enhancing the reservoir permeability while maintaining adequate fracture spacing is challenging.
机译:本文通过评估原位应力,自然骨折模式和液压刺激对地热传导和对流过程的影响,对增强的地热系统(EGS)的可行空间进行了解。 EGS需要刺激技术以改善稀疏的裂缝岩体中的断裂网络透射率,以平衡导电和对流热传输。三个原始压力的三个原型地形典型的北美正常,滑行和推力故障地区是液压破裂和水力剪切,以离散的裂缝网络(DFN)模型,使得总可用的骨折区域和深度的断裂间距变得足够用于地热能生产。使用分析方程对均匀孔径平行骨折的分析方程确定了裂缝间距和区域的充分性,这被认为是最佳案例场景。使用现有自然骨折的水力剪切和诱导拉伸压裂的模拟开发了连接的骨折网络。储存器的平均初始温度需要是200℃,并且使用该约束以及区域热梯度来定义地热储层的深度。讨论了开发和后来利用这些系统所需的泵送压力和持续时间。低地热梯度和高最小应力值限制了在美国主要推力故障地区创建EGS资源的实用性。在正常和防滑断线区域中的EGS开发似乎更具易行,但可能需要刺激井和任何注射或生产井的横向钻井。岩石岩性差异影响骨折间距的约束。设计适当的刺激计划,该计划平衡增强储层渗透率,同时保持足够的骨折间距是具有挑战性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号