首页> 外文会议>IEEE Antennas and Propagation Society International Symposium >FEMSTER: An object oriented class library of discrete differential forms
【24h】

FEMSTER: An object oriented class library of discrete differential forms

机译:百分率:一个面向对象的离散差异形式类库

获取原文

摘要

The equations of electromagnetics can be simply and elegantly cast in the language of differential geometry, more precisely in terms of differential forms or p-forms [1], [2], [3]. In this geometrical setting, the fundamental conservation laws are not obscured by the details of coordinate system dependent notation; and, the governing equations can be reformulated in a more compact and clear way using well known differential operators of the exterior algebra such as the exterior derivative, the wedge product, and the Hodge star operator. In this context, a natural framework for the modeling of physical quantities is also provided. For example, the electric potentials can be represented by 0-forms; electric and magnetic fields by 1-forms; electric and magnetic fluxes by 2-forms; and. scalar charge density by 3-forms. Our primary motivation for the development of FEMSTER was the need for a common fi-nite element framework for electrostatics, magnetostatics, eddy current problems, Helmholtz equation, time-dependent Maxwell equations, etc. Recently, Hiptmair [4], motivated by the theory of exterior algebra of differential forms, presented a unified mathematical frame-work for the construction of conforming finite element spaces. Remarkably, both H(curl) and H(div) conforming finite element spaces and the definition of their degrees of free-dom and interpolation operators can be derived within this framework. Given a physical law expressed in the language of differential forms, it is quite straightforward to discretize the problem using our class library. Our second motivation was the need for high-order discretization which can reduce the mesh size, memory usage, and CPU time required to achieve a prescribed error tolerance. This is particularly true for electrically large problems due to numerical dispersion. The FEMSTER library contains implementations of finite element basis functions of arbitrary order. These implementations include both uniform and non-uniform interpolatory bases, the latter providing significantly improved numerical stability as the order is increased.
机译:电磁学的方程可以简单地和优雅地铸造差分几何形状的语言,更精确地就不同的形式或p形式[1],[2],[3]。在这种几何环境中,基本保护法不受坐标系依赖符号的细节来模糊的;并且,控制方程可以以更紧凑而清晰的方式使用外部代数的公知的微分算子以更紧凑和清晰的方式重新重整,例如外部衍生物,楔形产品和Hodge星操作器。在这种情况下,还提供了用于建模的物理量的自然框架。例如,电势可以由0形式表示;电场1形式;电磁通量2形式;和。按3形式的标量电荷密度。我们对乳花发展的主要动机是需要静电,磁静电,涡流问题,Helmholtz方程,时间依赖的麦克斯韦方程等常见的Fi-Nite元素框架。最近,Hiptmair [4],受到理论的动机差异形式的外部代数呈现统一的数学框架,用于构建有限元空间的构建。值得注意地,可以在该框架内符合有限元空间的H(卷曲)和H(div)和其自由DOM和插值运算符的定义。鉴于以差异形式的语言表达的物理法,可以使用我们的类库来离散问题非常简单。我们的第二个动机是需要高阶离散化,这可以减少实现规定误差容差所需的网格尺寸,内存使用和CPU时间。由于数值分散,这尤其如此。百分比库包含任意顺序的有限元基函数的实现。这些实施方式包括均匀和不均匀的内插基座,后者提供显着提高的数值稳定性,因为顺序增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号