首页> 外文会议>Jnlian Szekely Memorial Symposium >Mathematical Modeling of Geometry, Composition, and Structure of Welds
【24h】

Mathematical Modeling of Geometry, Composition, and Structure of Welds

机译:几何,组成和焊缝结构的数学建模

获取原文

摘要

Weldment properties are affected by thegeometry, chemical composition, and structure of theweld metal. Recent research at Penn State aimed atpredicting these factors by numerical modeling of heatand mass transfer, fluid flow, and solid state phasetransformation kinetics are reviewed.For well over a decade, the lack of reproducibilityof the weld penetration has been attributed to the smalldifferences in the concentrations of surface activeelements, such as sulfur, that are known to improve weldpenetration. What has been baffling is that in many cases,their presence has not actually resulted in the expectedhigh depth of penetration. Recent research has shownthat unexpected, and even apparently anomalous, resultsof weld penetration can be explained from the detailedinsight achieved through the modeling of transport processes.During fusion welding, the weld metal compositionchanges owing to the evaporation of alloying elements,chemical reactions, and the dissolution of oxygen,nitrogen, and hydrogen in the weld metal from a plasmacontaining excited and ionized species of these gases.Experiments involving exposure of isothermal metaldrops to well-characterized plasmas have provided newinsight into the commonly observed high gas solubilityin the weld metal. As a result of these experiments andthe recent modeling of alloying element evaporation andgas dissolution, weld metal composition can now bepredicted, at least under controlled conditions, based on transport phenomena.Critical to the weld metal properties are the natureand amount of various metallic phases and inclusions.The inclusion composition and size distribution in theweld metal have been modeled considering heat transferand fluid flow in the weld pool and the kinetics ofnucleation and growth. A model has also been developedto quantitatively predict the microstructures of lowalloy steel weld metal by combining transient, threedimensional, calculation of heat transfer and fluid flowwith solid state phase transformation theory.
机译:焊接性能受到电池晶型,化学成分和金属结构的影响。据审查,宾夕法尼亚州钢笔国家的研究旨在通过热量传质,流体流动和固态平衡动力学进行数值模拟。遍历焊接渗透率缺乏可再现性归因于浓度的小分析物众所周知的表面活性物质,如硫,可改善焊接。令人困惑的是,在许多情况下,他们的存在实际上并没有导致预期的渗透深度。最近的研究表明,甚至显然异常,焊接渗透率甚至可以通过通过运输过程的建模来解释焊接渗透。熔化焊接,由于合金化元素,化学反应和溶出的蒸发,焊接金属成分化。来自这些气体的焊接金属焊接金属中的氧气,氮和氢气的氧气,氮气和氢气。涉及进暴瓶暴露于特征的等离子体的实验已经为焊接金属的常见观察到的高气溶解素提供了新的态度。由于这些实验和最近合金元素蒸发Andgas溶解的建模,现在可以在基于运输现象的控制条件下,焊接金属组合物现在可以归因于焊接金属组合物。焊接现象是焊接金属性质的基因量的各种金属相和夹杂物的基因量。在焊接池中的热转印和液体流动和脑内和生长的动力学中,已经建模了嵌合金属中的包含组成和尺寸分布。还已经开发了一种模型来定量地通过组合瞬态,三维,传热和流体流量的计算来定量预测Lowalloy钢焊接金属的微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号