首页> 外文会议>ASME Pressure Vessels and Piping Conference >An Improved Method of Evaluating the Stress Intensity Factor for a Penetrating Circumferential Defect in a Self-Balancing Residual Stress Field in a Weld
【24h】

An Improved Method of Evaluating the Stress Intensity Factor for a Penetrating Circumferential Defect in a Self-Balancing Residual Stress Field in a Weld

机译:一种改进的焊缝中自平衡残余应力场中渗透周缺陷应力强度因子的改进方法

获取原文

摘要

It is required to determine the stress intensity factor (SIF) contributed from a through-wall residual stress distribution when assessing the structural integrity of a welded joint containing flaws. By decomposing the through-wall residual stress distribution into a membrane stress component (σ_m), bending stress component (σ_b) and self-balancing stress component (σ_(sb)), the total SIF from the through-wall residual stress distribution (K_(total)) comprises K_m (due to σ_m), K_b (due to σ_b) and K_(sb) (due to σ_(sb)). K_m and K_b can be relatively easy to determine as there are standard solutions available for common geometries and flaw types. However, it is not straightforward to calculate K_(sb) owing to the arbitrary distribution of the self-balancing stress component. In particular, no SIF solutions are available for a through-wall penetrating defect in a plate or a cylinder subjected to an arbitrary through-wall self-balancing stress distribution other than for three special distributions (cosine, triangular and square distributions). Neglecting the contribution of σ_(sb) to the K_(total) could significantly underestimate the crack driving force, thus leading to a non-conservative assessment of limiting defect size. Therefore, the calculation of K_(sb) for a though-wall penetrating defect in a plate or a cylinder under an arbitrary stress distribution is of the primary concern in this work. Understandably, finite element analysis (FEA) can be used to calculate the K_(sb) in these situations, but it is costly to perform such analysis. In this work, a simple method is proposed for estimating K_(sb) due to the self-balancing component which has a different distribution from the cosine, triangular and square distributions. This method is an extension of the approach adopted by Annex Q, BS 7910:2013 in dealing with the calculations of K_(sb) resulted from the σ_(sb) profiles which are decomposed from the proposed upper bound through-wall welding residual stress profiles. Some typical through-wall welding residual stress distributions are investigated with the proposed method in estimation of the K_(sb) for a through-wall penetrating defect in a plate or a cylinder. Discussion and highlights are given in the aspects of the effects of welding residual stress profiles on SIFs, the implications for limiting defect sizes, and the likelihood of underestimating the K_(sb) when using the equation established in R6 Revision 4 with a cosine distribution for any other distributions.
机译:它必须确定评估含缺陷焊接接头的结构完整性时从贯通壁残余应力分布作出贡献的应力强度因子(SIF)。通过分解穿墙残余应力分布为膜应力分量(σ_m),弯曲应力分量(σ_b)和自平衡应力分量(σ_(SB)),从穿墙残余应力分布的总SIF(K_ (总))包括K_M(由于σ_m),K_b(由于σ_b)和K_(SB)(由于σ_(SB))。 K_M和K_b可以比较容易确定,因为是为普通的几何形状和缺陷类型的标准解决方案。然而,它不是简单的由于自平衡应力分量中的任意的分布,计算K_(SB)。特别是,没有SIF解决方案可用于在一板的贯通壁穿透缺陷或遭受任意穿墙自平衡应力比三个特殊分布(余弦,三角形和正方形分布)的其它分布的气缸。忽略σ_(SB)的贡献K_(总)可以显著低估裂纹驱动力,从而导致限制缺陷尺寸的非保守的评估。因此,K_(SB)的要虽然壁的任意应力分布下在贯穿板或圆柱体缺陷的计算是在这项工作中的主要关注的问题。可以理解的是,有限元分析(FEA),可以使用在这些情况下,以计算K_(SB),但它是昂贵的执行这样的分析。在这项工作中,一个简单的方法,提出了用于估计K_(SB)由于其具有从所述余弦,三角形和正方形分布不同的分布自平衡组件。这种方法是通过附件Q采用的方法的延伸,BS 7910:在处理K_(SB)的计算结果从其中从穿墙所提出的上限焊接残余应力分布分解σ_(SB)的配置文件2013 。一些典型的穿墙焊接残余应力分布与在K_(SB)的估计用于在板或滚筒上的穿墙穿透缺陷所提出的方法的影响。讨论和特色的焊接上的SIF残余应力分布,用于限制缺陷尺寸的影响影响的方面中,将其低估的可能性的K_(SB)使用具有余弦分布建立R6修订4等式时任何其他分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号