首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >MICROSTRUCTURAL ANALYSIS OF SPALL DAMAGE NUCLEATION AND GROWTH IN MULTICRYSTALLINE TITANIUM
【24h】

MICROSTRUCTURAL ANALYSIS OF SPALL DAMAGE NUCLEATION AND GROWTH IN MULTICRYSTALLINE TITANIUM

机译:多晶硅钛椎间壳损伤成核成核和生长的微观结构分析

获取原文
获取外文期刊封面目录资料

摘要

Shock loading is a dynamic condition that can lead to material failure and deformation modes at the microstructural level such as cracking, void nucleation and growth, and spallation. Knowledge of shock loading and spall failure is of great benefit to understanding ballistic impact in military vehicles and armor, crash impacts in automobiles, space vehicles, and satellite loadings, and geological events such as earthquakes. Furthermore, studying material failure at the microstructural level is important to understand macroscale behavior. Spallation, the nucleation, growth, and coalescence of voids, is a phenomenon where variability at the microscale can affect overall response. By analyzing incipient and intermediate damage patterns at and around interfaces and boundaries on the microstructural level, can help further our understanding of the process leading to damage and provide insight on how to develop stronger structures that can withstand impacts and rapid crack propagation. Most of the existing work has looked into the effect of grain boundaries in spall damage for body and face centered cubic (BCC, FCC) materials, but research is still lacking on grain boundary effects in spall damage in hexagonal close packed materials, such as titanium. Samples of high purity Ti were heat treated to obtain large grains, averaging 250 microns in size (multicrystals), in order to isolate grain boundary effects. These multicrystals were shocked using laser-launched flyer plates at the Trident laser at Los Alamos National Laboratory (LANL) and monitored using a velocity interferometry system for any reflector (VISAR). Pressures used were 5 - 8 GPa. Samples were soft recovered and cross-sectioned to perform quantitative characterization of damage. Spallation damage observed in the titanium targets was characterized using electron backscattering diffraction (EBSD), optical microscopy, and scanning electron microscopy (SEM) to gather information on the crystallographic characteristics of damage nucleation sites, with emphasis on grain boundaries and grain orientations that lead to damage localization. Initial results show that damage localized along grain boundaries, and the damage mode switched from intergranular to transgranular where grains were larger than average.
机译:冲击载荷是一种动态条件,可以导致在微观结构水平的材料故障和变形模式,例如开裂,空隙成核和生长和脱落。对冲击载荷和突出失败的了解对于在军用车和盔甲的撞击力,汽车,空间车辆和卫星负荷以及地震等地质事件中的撞击影响以及地质事件的撞击影响是有利的。此外,在微观结构水平处研究材料故障对于理解宏观行为非常重要。空隙的剥落,核心,生长和聚结,是一种现象,其中微观尺度的变异性会影响整体反应。通过在微观结构级别的接口和边界周围分析初期和中间损伤模式,可以进一步了解我们对导致损坏的过程的理解,并提供有关如何开发能够承受撞击和快速裂纹传播的更强大结构的洞察力。大多数现有工作都研究了谷物边界对身体和面部中心的立方体(BCC,FCC)材料的突然损伤的影响,但研究仍然缺乏在六边形关闭填充材料中的椎间界损伤中的晶界效应,例如钛。高纯度Ti的样品被热处理以获得大颗粒,平均250微米(多晶体),以分离晶界效应。这些多晶体在Los Alamos国家实验室(LANL)的三叉戟激光器处使用激光发射的传单板震动,并使用速度干涉测量系统进行任何反射器(VISAR)。使用的压力为5 - 8 GPA。样品被软回收并横截面以进行损伤的定量表征。使用电子背散射衍射(EBSD),光学显微镜和扫描电子显微镜(SEM)在表征钛靶系的表征,以收集有关损伤成核位置的晶体特性的信息,重点是导致晶粒边界和晶粒取向损害本地化。初始结果表明,沿晶界局部造成的损坏,以及从晶粒到晶粒大于平均水平的晶粒的损伤模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号