首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >DEVELOPMENT OF AN EMPIRICAL MODEL TO PREDICT SULFURIC ACID CONDENSATE FORMATION IN AIR HANDLING SYSTEM OF MEDIUM SPEED DIESEL ENGINES
【24h】

DEVELOPMENT OF AN EMPIRICAL MODEL TO PREDICT SULFURIC ACID CONDENSATE FORMATION IN AIR HANDLING SYSTEM OF MEDIUM SPEED DIESEL ENGINES

机译:一种经验模型预测中速柴油机空气处理系统中硫酸凝结物形成的实证模型

获取原文

摘要

One of the biggest challenges for engines used in Marine industry is to burn fuels of varied compositions, since the vessels often move from regions with highly regulated fuels to regions with no regulations, unlike their on-road and other stationary counterparts. This poses an enormous risk to the performance, reliability, durability and service life of engines that employ exhaust gas recirculation (EGR) as a prime technology to meet stringent emission regulations, laid out by various regulating bodies across the globe like the United States (U.S.) Environmental Protection Agency (EPA) and International Maritime Organization (IMO). Operating on fuels with higher Sulfur content poses a risk of reduced engine component life, due to the formation of concentrated Sulfuric acid (H_2SO_4), which, if not handled carefully, would lead to higher rates of corrosion on engine parts. Hence, the ability to predict the potential for H_2SO_4 formation as well its quantity to be handled is essential. This research paper focuses on the development of an empirical model to predict the amount of H_2SO_4 condensate that can be formed in the air handling system of medium speed diesel engines. The model utilizes a combination of fundamental physics, chemistry, thermodynamics and chemical kinetics. The H_2SO_4 prediction calculation employs basic measurable parameters from a running engine, such as engine speed, load, EGR flow rate, fuel flow rate, fuel Sulfur concentration to compute a molar balance of hydrocarbon fuel and combustion air quantities along the entire range of engine operation, providing the amount of H_2SO_4 condensate formed. This is done primarily at EGR cooler, where the recycled exhaust gas gets cooled primarily and the EGR mixer, where it gets cooled further after coming in contact with the charge air and are identified as critical locations.
机译:其中一个用于海洋工业使用的发动机的最大挑战是燃烧各异的的燃料,因为船只往往从高度管制燃料的区域移动到的区域,没有法规,不像他们在道路上和其他固定的同行。这对采用废气再循环(EGR)作为素质技术来满足严格排放法规的发动机的性能,可靠性,耐用性和使用寿命造成巨大风险,以满足各种调节机构,如美国(美国) )环境保护局(EPA)和国际海运组织(IMO)。操作上具有较高硫含量的燃料造成降低的发动机部件寿命的风险,由于形成浓硫酸(H_2SO_4),如果不仔细处理,会导致发动机部件的腐蚀的更高的速率。因此,预测H_2SO_4形成的可能性的能力也是必不可少的。该研究文件侧重于开发经验模型,以预测可以在中速柴油发动机的空气处理系统中形成的H_2SO_4冷凝物的量。该模型利用基本物理,化学,热力学和化学动力学的组合。所述H_2SO_4预测计算采用来自运行中的发动机基本可测量参数,如发动机速度,负载,EGR流量,燃料流量,燃料的硫浓度来计算碳氢化合物燃料和燃烧空气量的摩尔平衡沿着发动机运行的整个范围内,提供形成的H_2SO_4缩合物的量。这主要是在EGR冷却器中完成,其中再循环的废气主要和EGR混合器冷却,在那里在与电荷空气接触后进一步冷却,并且被识别为关键位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号