首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >DEEP 3D CONVOLUTION NEURAL NETWORK METHODS FOR BRAIN WHITE MATTER HYBRID COMPUTATIONAL SIMULATIONS
【24h】

DEEP 3D CONVOLUTION NEURAL NETWORK METHODS FOR BRAIN WHITE MATTER HYBRID COMPUTATIONAL SIMULATIONS

机译:深度3D卷积神经网络方法脑白质混合计算模拟

获取原文
获取外文期刊封面目录资料

摘要

Material properties of brain white matter (BWM) show high anisotropy due to the complicated internal three-dimensional microstructure and variant interaction between heterogeneous brain-tissue (axon, myelin, and glia). From our previous study, finite element methods were used to merge micro-scale Representative Volume Elements (RVE) with orthotropic frequency domain viscoelasticity to an integral macro-scale BWM. Quantification of the micro-scale RVE with anisotropic frequency domain viscoelasticity is the core challenge in this study. The RVE behavior is expressed by a viscoelastic constitutive material model, in which the frequency-related viscoelastic properties are imparted as storage modulus and loss modulus for the composite comprised of axonal fibers and extracellular glia. Using finite elements to build RVEs with anisotropic frequency domain viscoelastic material properties is computationally very consuming and resource-draining. Additionally, it is very challenging to build every single RVE using finite elements since the architecture of each RVE is arbitrary in an infinite data set. The architecture information encoded in the voxelized location is employed as input data and is consequently incorporated into a deep 3D convolution neural network (CNN) model that cross-references the RVEs" material properties (output data). The output data (RVEs" material properties) is calculated in parallel using an in-house developed finite element method, which models RVE samples of axon-myelin-glia composites. This novel combination of the CNN-RVE method achieved a dramatic reduction in the computation time compared with directly using finite element methods currently present in the literature.
机译:脑白质(BWM)的材料特性显示出高各向异性,由于内均匀脑 - 组织(轴突,髓鞘和胶质胶)之间的复杂内部三维微观结构和变体相互作用。从我们之前的研究来看,有限元方法用于将微尺度代表体积(RVE)与正向频率域粘弹性合并到积分宏观级BWM。具有各向异性频率域粘弹性的微级rve的量化是本研究中的核心挑战。 RVE行为由粘弹性组成型材料模型表示,其中频率相关的粘弹性特性被赋予由轴突纤维和细胞外胶质的复合材料的储存模量和损失模量。使用有限元构建具有各向异性频率域粘弹性材料特性的构建圆形的性质是计算非常耗费和资源排水。此外,由于每个RVE的架构在无限数据集中是任意的,因此使用有限元构建每个单个rve是非常具有挑战性的。在体文化位置编码的架构信息被用作输入数据,因此结合到深度3D卷积神经网络(CNN)模型中交叉引用rves“材料属性(输出数据)。输出数据(rves”材料属性)使用内部开发的有限元方法并行计算,该有限元方法模拟Axon-myelin-glia复合材料的rve样本。与直接使用当前存在于文献中的有限元方法相比,CNN-RVE方法的这种新的CNN-RVE方法的组合在计算时间中实现了急剧减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号