首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >FINITE DIFFERENCE TIME DOMAIN SIMULATIONS OF HYBRID NEUROTRANSDUCERS BASED OPTICAL MICROLASERS
【24h】

FINITE DIFFERENCE TIME DOMAIN SIMULATIONS OF HYBRID NEUROTRANSDUCERS BASED OPTICAL MICROLASERS

机译:基于杂种神经递质的有限差分时域模拟光学微溶剂

获取原文

摘要

Different pathologies such as Alzheimer's, Parkinson's, Wilson's diseases, and chronic traumatic encephalopathy due to blasts and impacts affect the brain functions altering the neuronal electrical activity. An important aspect of the brain study is the use of non-invasive, non-surgical methodologies that are suitable to the well-being of the patients. Only a portion of the electromagnetic field can be detected by applying sensors outside the scalp; in addition, surgery is often involved if sensors are applied in the subcutaneous region of the skull. Optical techniques applied to biomedical research and diagnostics have been spread during the last decades. For example, near infrared light (NIR) of spectral range goes from 800 nm to 1300 nm, it is harmless radiation for the living tissue, and can penetrate the living matter in depth as, it turns out that most of the living matter is transparent to the NIR light. Optical microlasers have been recently proposed as neurotransducers for minimally invasive neuron activity detection for the next generation of brain-computer interface (BCI) systems. They are lightweight, require low power consumption and exhibit low latency. This novel sensor that can be made of biocompatible material is coupled with a voltage sensitive dye; the fluorescence of the dye, which is excited by an external light source, is used to generate optical (laser) modes. Any variation in the neurons' membrane electric potential via evanescent field's perturbation turn affect the shifting of these laser modes. In order to reduce the energy required to power these devices and to improve their optical emission, metal nanoparticles can be coupled in order to use their plasmonic effect. In this paper, finite-difference time-domain (FDTD) numerical technique is used to analyze the performances on a dye-doped microlaser. Purcell effect and resonant wavelengths are observed.
机译:不同的病理学如阿尔茨海默,帕金森,威尔逊,威尔逊的疾病和慢性创伤性脑病因爆炸和影响而影响脑功能改变神经元电活动。大脑研究的一个重要方面是使用适合于患者的福祉的非侵入性,非手术方法。只有通过在头皮外面的传感器施加传感器,只能检测到电磁场的一部分;此外,如果在头骨的皮下区域应用传感器,则往往涉及手术。应用于生物医学研究和诊断的光学技术在过去几十年中已经传播。例如,光谱范围的近红外光(NIR)从800nm到1300nm,它是活组织的无害辐射,并且可以深入地穿透生物,事实证明,大多数生物都是透明的到了nir光。最近已经提出了光学微溶剂作为神经递质的神经递质,用于下一代脑 - 计算机接口(BCI)系统的微创神经元活性检测。它们很轻,需要低功耗并表现出低延迟。这种可以由生物相容性材料制成的新型传感器与电压敏感染料联接;由外部光源激发的染料的荧光用于产生光学(激光)模式。通过渐逝场的扰动转弯的神经元膜电势的任何变化都影响了这些激光模式的移位。为了减少供电所需的能量并改善其光学发射,可以耦合金属纳米颗粒以使用它们的等离子体效应。在本文中,有限差分时间域(FDTD)数值技术用于分析染料掺杂微瓶上的性能。观察到purcell效应和谐振波长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号