首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >DIRECTED GRAPHICAL MODEL FOR REAL-TIME PROCESS MONITORING IN ADDITIVE MANUFACTURING
【24h】

DIRECTED GRAPHICAL MODEL FOR REAL-TIME PROCESS MONITORING IN ADDITIVE MANUFACTURING

机译:加性制造中实时过程监控的针对性图解模型

获取原文

摘要

An important challenge for additive manufacturing and 3D printing processes is accurate and repeatable deposition quality. Current approaches are unable to handle variable process parameters and input material quality. Accurately controlling material properties requires predicting material state changes. This work proposes a model using statistical learning techniques in conjunction with iterative material study to identify and compute the sources of defects and local material properties. The model makes use of the element-by-element fabrication and time-series material changes of additive manufacturing. The deposition of a part is segmented into volume elements, called voxels. Each deposited voxel is treated as an independent sample of the process parameter effects. The time series of deposition is treated as a Markov Chain, with the control parameters and measurable emissions as known quantities. The state of the material is a hidden variable. The hidden variable is approximated using material models and post-fabrication testing results to train the distribution embedded in the Markov Chain. The results indicated that a physics-based material state transition matrix in conjunction with final material properties and time-series of physical emissions can give insight into process variability and control errors. These results have wide ranging implications as a computationally efficient means of iterative process improvement for additive manufacturing, designing new control strategies, and revealing the real-time state of voxels as they are deposited. This approach moves closer to a predictive model that includes current information on the state of the process to update the prediction.
机译:添加剂制造和3D印刷工艺的一个重要挑战是准确和可重复的沉积质量。目前的方法无法处理可变过程参数和输入材料质量。准确控制材料特性需要预测材料状态变化。这项工作提出了一种模型,使用统计学习技术结合迭代材料研究来识别和计算缺陷和局​​部材料特性的来源。该模型利用逐元制造和添加剂制造的时间序列材料变化。将部分的沉积分段为容量元素,称为体素。将每个沉积的体素视为过程参数效应的独立样本。将沉积的时间序列被视为马尔可夫链,控制参数和可测量的排放作为已知量。材料的状态是隐藏变量。隐藏变量使用材料模型和制造后的测试结果近似,以培训嵌入马尔可夫链中的分布。结果表明,基于物理的材料状态转换矩阵结合最终材料特性和时序排放可以洞察过程变异性和控制误差。这些结果具有广泛的矛盾含义,作为添加剂制造,设计新的控制策略,并揭示塑存的实时状态的迭代过程改进的计算有效手段。该方法更接近地移动到预测模型,该预测模型包括关于更新预测的过程状态的当前信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号