首页> 外文会议>International Magnetics Conference >Design for an Six-Phase Synchronous Reluctance Motor Mounted With Centrifugal Compressor Using Multiobjective Optimization Methods.
【24h】

Design for an Six-Phase Synchronous Reluctance Motor Mounted With Centrifugal Compressor Using Multiobjective Optimization Methods.

机译:使用多目标优化方法安装有离心式压缩机的六相同步磁阻电机的设计。

获取原文
获取外文期刊封面目录资料

摘要

This paper describes a two-step design using optimization method for a six-phase synchronous reluctance motor mounted with a centrifugal compressor to achieve minimum cost, lower torque ripple, maximum efficiency and higher power factor. In the first-step optimization, the multiobjective design of adopted altered bee colony optimization (BCO) and Taguchi method combined with finite element analysis (FEA) are used for optimizing the barrier shape and layer number in the rotor to reduce torque ripple and raise power factor. In the second-step optimization, the adopted multiobject design method can be emplyed for optimizing the geometry of stator to achieve minimum cost and maximum efficiency. Experimental results show that these techniques can not only improve the efficiency and power factor but also reduce the material cost and torque ripple. The multiphase machine offers numerous advantages over the conventional threephase motor drives such as increased torque per ampere for the same volume machine, reduction of the stator current per phase, improvement of torque density and increase of the fault tolerance [1-2]. Some of the most suitable applications are electric, hybrid electric vehicles [3] and ship propulsion [4]. An multiobjective optimization design of a six-phase synchronous reluctance motor applied in a centrifugal compressor provides an important role in helping the consumption systems. The factors of design optimization in the six-phase synchronous reluctance motor are minimizing material cost, minimizing torque ripple, maximizing efficiency, and maximizing power factor. One of the popular design methods of the electromagnetic devices is the use of finite-element analysis (FEA) coupled with optimization algorithms. However, the classical optimization algorithms, such as deterministic and stochastic methods, seem to be not very efficient by using the FEA because it needs longer computing time. Therefore, a multiobjective optimization design of a six-phase synchronous reluctance motor used in both the altered bee colony optimization (BCO) [5], [6] and the Taguchi method [7], [8] with FEA [9], [10] in practical methodology is applied in a centrifugal compressor system. In this paper, the motor is rated at a power of 3kW, rotating at 1800r/min. The initial design of the motor consists of a stator having 36 slots that carry two-layer windings, as shown in Fig. 1 and Table I. The losses of the motor include iron loss in the stator, copper loss in the winding, eddy current loss in the rotor, and rotational losses due to friction and wind resistance. The iron and copper losses were the dominant contributor in a centrifugal compressor. The finite-element method with the measurement that combined the BCO and the Taguchi method is a very efficient and effective approach in the robust design of a high-performance motor. This paper presents the optimization design of a six-phase synchronous reluctance motor using two-stage optimization processes, which mainly depends on the stator and rotor regions between cost and efficiency. The stator region is applied to reduce the use of the iron and the winding to minimize cost and maxmimize efficiency in the first stage, while the rotor parameters are kept unchanged. An optimization design based on the altered BCO and the Taguchi method with FEA is employed to further enhance the machine performance. The Taguchi method can optimize the machine parameter of performance characteristics in electrical discharge machining. The experimental results are then converted into a signal-to-noise (S/N) ratio. The S/N ratio can be used to measure the deviation of the show characteristics from the desired values. In the second-stage optimization, the objectives are the maximization of power factor and minimization of toque ripple. while the stator parameters are kept unchanged. An optimization design based on the altered BCO and the Taguchi method with FEA is employed to further enhance the machine perfo
机译:本文介绍了一种双层设计,使用安装有离心式压缩机的六相同步磁阻电动机的优化方法,以实现最小成本,更低的扭矩脉动,最大效率和更高功率因数。在第一步优化中,采用改变改变的蜂菌落优化(BCO)和Taguchi方法与有限元分析(FEA)相结合的多目标设计用于优化转子中的屏障形状和层数,以减少扭矩波动并提高功率因素。在二阶优化中,可以对采用的多孔设计方法进行施加以优化定子的几何形状以实现最小成本和最大效率。实验结果表明,这些技术不仅可以提高效率和功率因数,还可以降低材料成本和扭矩波动。多相机器通过传统的三相电动机驱动器提供众多优点,例如同一音量的每个安培的扭矩增加,每相的定子电流减小,扭矩密度的提高和容错率的增加[1-2]。一些最合适的应用是电动,混合动力电动车[3]和船舶推进[4]。在离心式压缩机中施加的六相同步磁阻电动机的多目标优化设计在帮助消费系统方面提供了重要作用。六相同步磁阻电动机设计优化的因素最小化材料成本,最小化扭矩纹波,最大化效率和最大化功率因数。电磁器件的流行设计方法之一是使用有限元分析(FEA)与优化算法。然而,经典优化算法,例如确定性和随机方法,似乎通过使用FEA不是非常有效,因为它需要更长的计算时间。因此,在改变的蜜蜂菌落优化(BCO)[5],[6]和Taguchi方法[7],[8]中使用的六相同步磁阻电动机的多目标优化设计[7],[9],[在实际方法中,在离心式压缩机系统中应用。在本文中,电机以3kW的功率额定电动机,在1800r / min旋转。电动机的初始设计包括具有36个槽的定子,其携带双层绕组,如图1所示。1和表I.电机的损耗包括定子中的铁损,绕组铜损失,涡流转子损失,以及由于摩擦和耐风力导致的旋转损耗。铁和铜损失是离心式压缩机中的主要贡献者。用于组合BCO和TAGUCHI方法的测量的有限元方法是高性能电动机的鲁棒设计中的非常有效且有效的方法。本文介绍了一种使用两级优化工艺的六相同步磁阻电动机的优化设计,主要取决于成本和效率之间的定子和转子区域。施加定子区域以减少铁和绕组的使用,以最小化第一阶段的成本和最大化效率,而转子参数保持不变。采用基于改变的BCO的优化设计和具有FEA的TAGUCHI方法来进一步增强机器性能。 TAGUCHI方法可以优化电气放电加工中性能特性的机器参数。然后将实验结果转换成信号 - 噪声(S / N)比。 S / N比可用于测量显示特征与所需值的偏差。在第二阶段优化中,目标是功率因数的最大化,并最小化Toque波纹。虽然定子参数保持不变。采用基于BCO改变的优化设计和具有FEA的Taguchi方法,进一步增强机器Perfo

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号