首页> 外文会议>International Magnetics Conference >Flexible Inter-Track Interference Cancellation for Generalized Interlaced Magnetic Recording.
【24h】

Flexible Inter-Track Interference Cancellation for Generalized Interlaced Magnetic Recording.

机译:用于广义交错磁记录的灵活间干扰消除。

获取原文

摘要

Interlaced magnetic recording (IMR) shows potential to achieve higher areal density capability (ADC) than conventional magnetic recording by recording tracks in an interlaced manner [1]. Top and bottom tracks can be recorded in different frequencies such that the bit error rate (BER) performance can be balanced, providing extra track or linear density pushes. For example, heat assisted IMR (HIMR) enables higher ADC than conventional heat assisted magnetic recording (HAMR) and shingled recorded HAMR by allowing broader bottom tracks with sharper bit transitions and narrow top tracks by control the heat spot [2]. On the other hand, bottom tracks in IMR can suffer from sever inter-track interference (ITI) by subsequent top track writes on both sides, especially as the track density increases [3]. In order to mitigate the ITI effect for such double-sided squeezed tracks, customized ITI cancellation scheme has been introduced, where the asynchronously written tracks are processed in the oversampled domain and overall ADC can be improved [4]. In this study, ITI cancellation scheme is extended for generalized IMR framework, where the ITI can be distributed for top and bottom tracks by applying dual write configurations. One of the major contributions of the tangible ADC gain by HIMR is the additional laser spot control to form narrow but sharp bit transitions in top tracks [2]. In this manner, the wide and sharp bottom tracks are only partially erased by the subsequent top track writes, and, thus, the ITI can be effectively managed. Likewise, the write track widths can be modulated for conventional perpendicular recording and may provide the ADC gain once the ITI is efficiently handled. Note that ITI cancellation can also be needed for top tracks as well, and the relative linear density differences of ITI can be both positive and negative. Therefore, flexible ITI cancellation scheme is proposed in this study to handle the widely varying synchronization issues. The waveforms need to be over-sampled first to effectively synchronize the neighboring tracks, and double of baud rate of lower density track can be used. For example, under 2500 and 2000 kBPI dual writer configurations, the oversampled data can be denoted as x(t)2x, x(b)1.6x respectively, relative to its baud rate. Then, the error signal is first estimated, e(t)2x, e(b)1.6x, resampled to the side track data rate, e'(t)1.25x, e'(b)0.8x, and then the ITI response is estimated for tracks mt and mb as, {h'(t)mt-1, h'(t)mt+1}=arg minh(t)mt-1,h(t)mt+1 || e'(t)1.25x - h(t)mt-1*n展开▼
机译:隔行扫描磁记录(IMR)所示电位通过以交织方式[1]的记录磁道,以实现比常规的磁记录更高面密度的能力(ADC)。顶部和底部轨道可被记录在不同的频率,使得比特误差率(BER)性能可以平衡,从而提供额外的轨道或线性密度推。例如,热辅助IMR(HIMR)能够实现更高的ADC比常规热辅助磁记录(HAMR)和叠瓦通过控制允许更广泛的底迹具有尖锐位转换和窄顶部轨道上的热斑点[2]记录HAMR。在另一方面,在IMR底部轨道可以从服务器跨轨道干扰(ITI)通过随后的顶部轨道写入两侧受到影响,尤其是随着道密度的增加,[3]。为了减轻这样的双面挤压磁道的ITI效果,定制的ITI消除方案已经引入,其中所述异步写入磁道在过采样域被处理并整体ADC可以提高[4]。在这项研究中,ITI消除方案被扩展广义IMR框架,其中,所述ITI可以通过应用双写入配置来分发用于顶部和底部轨道。之一的由HIMR有形ADC增益的主要贡献是附加激光点控制,以形成在顶部轨道[2]窄但锋利的位跃迁。以这种方式,在宽和尖底轨道只部分地被随后的顶部轨道写入擦除,并且,因此,该ITI可以有效地管理。同样地,写入磁道宽度可以被调制为常规垂直记录,并且可以提供对ADC增益一旦ITI被有效地处理。注意,ITI,也可以根据需要消除对顶部轨道,以及,ITI的相对线性密度差既可以是正和负。因此,灵活的ITI消除方案,本研究提出处理广泛变化的同步问题。的波形必须是第一过采样,以有效地同步相邻磁道上,和较低的密度轨道的波特率的两倍,可以使用。例如,在2500年和2000年kBPI双重写入器配置中,过取样的数据可以被表示为x<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的2倍, X<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(b)中1.6倍 分别相对于其波特率。然后,误差信号被第一估计,例如<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的2倍,E.<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(b)中1.6倍,重采样到侧轨的数据速率,E”<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的1.25倍,E”<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(b)中0.8倍,然后将ITI响应估计曲目米 t 和M. b 如,{H”<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的MT-1 < /子>, H'<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的MT + 1 < /子>} = ARG分钟<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”> H(t)的MT-1中,h(t)的MT + 1 || E”<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的1.25倍 - H<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink = “http://www.w3.org/1999/xlink”>(t)的MT-1 < /子>* N<子的xmlns:MML = “http://www.w3.org/1998/Math/MathML” 的xmlns:的xlink =“http://www.w3.org/1999/xlink

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号