首页> 外文会议>Society of Exploration Geophysicists International Exposition and Annual Meeting >A new multidimensional method that eliminates internal multiples that interfere with primaries, without damaging the primary, without knowledge of subsurface properties, for off-shore and on-shore conventional and unconventional plays
【24h】

A new multidimensional method that eliminates internal multiples that interfere with primaries, without damaging the primary, without knowledge of subsurface properties, for off-shore and on-shore conventional and unconventional plays

机译:一种新的多维方法,消除了干扰一次波的内部多次波,而不损害一次波,不了解地下属性,适用于海上和海上常规和非常规区块

获取原文

摘要

Multiple removal is a longstanding problem in exploration seismology. Many methods have been developed including: stacking, FK filter, Radon transform, deconvolution and Feedback loop. They make statistical assumptions, assume move-out differences, or require knowledge of the subsurface and the generators of the multiples (e.g., Foster and Mosher, 1992; Verschuur et al., 1992; Berkhout and Verschuur, 1997; Jakubowicz, 1998; Robinson and Treitel, 2008; Wu and Wang, 2011; Meles et al., 2015; da Costa Filho et al., 2017; Lomas and Curtis, 2019). As the industry moved to deep water and more complex on-shore and off-shore plays, these methods bumped up against their assumptions. The Inverse Scattering Series (ISS) internal-multiple-attenuation algorithm (Araujo et al., 1994, Weglein et al., 1997 and Weglein et al., 2003) made none of the assumptions of previous methods (listed above) and stands alone, and is unique in its effectiveness when the subsurface and generators are complicated and unknown. It is the only multi-dimensional internal-multiple-removal method that can predict all internal multiples with exact arrival time and approximate amplitude without requiring any subsurface information. When internal multiples and primaries are isolated, the ISS internal-multiple-attenuation algorithm is usually combined with an energy-minimization adaptive subtraction to remove internal multiples. For isolated internal multiples, the ISS attenuator combined with energy-minimization adaptive subtraction is successful and effective. However, when internal multiples are proximal to and/or interfering with primaries or other events, the criteria behind energy-minimization adaptive subtraction can fail (e.g., the energy can increase rather than decrease when a multiple is removed from a destructively interfering primary and multiple). With interfering events, energy-minimization adaptive subtraction can lead to damaging the target primary, which is the worst possible outcome. In this paper, we provide the first multi-dimensional ISS internal-multiple elimination algorithm that can predict both the correct time and amplitude of internal multiples. This is an important part of a three-pronged strategy proposed by Weglein at the 2013 SEG International Conference (Weglein 2014). Herrera and Weglein (2012) proposed a 1D ISS internal-multiple-elimination algorithm for all first-order internal-multiples generated at the shallowest reflector. Y. Zou and Weglein (2014) then went further and developed and illustrated an elimination algorithm that can eliminate all first-order internal multiples generated by all reflectors for a 1D earth. In this paper we provide the first multidimensional ISS internal-multiple-elimination method that can remove internal multiples interfering with primaries, without subsurface information, and without damaging the primary. We also compare the ISS elimination result with ISS attenuation plus energy-minimization adaptive subtraction for an interfering primary and internal multiple. This ISS internal-multiple-elimination algorithm is more effective and more compute-intensive than the current most capable ISS attenuation-plus-adaptive-subtraction method. We provide it as a new capability in the multiple-removal toolbox and a new option for circumstances when this type of capability is called for, indicated and necessary. That can frequently occur in offshore and onshore conventional and unconventional plays. We are exploring methods to reduce the computational cost of these ISS attenuation and elimination algorithms, without compromising effectiveness.
机译:多次移动是勘探地震学中一个长期存在的问题。目前已经发展了许多方法,包括叠加、FK滤波、Radon变换、反卷积和反馈回路。他们做出统计假设,假设移动差异,或需要了解地下和多次波的产生者(例如,福斯特和莫舍,1992年;弗斯丘尔等人,1992年;伯克霍特和弗斯丘尔,1997年;雅库博维茨,1998年;罗宾逊和特雷特尔,2008年;吴和王,2011年;梅莱斯等人,2015年;达科斯塔·菲略等人,2017年;洛马斯和柯蒂斯,2019年)。随着该行业转向深水和更复杂的陆上和海上作业,这些方法与他们的假设背道而驰。逆散射系列(ISS)内部多次衰减算法(Araujo等人,1994年,Weglein等人,1997年和Weglein等人,2003年)没有对以前的方法(如上所列)进行任何假设,并且是独立的,在地下和发电机复杂且未知的情况下,其有效性是独特的。它是唯一一种可以预测所有内部多次波的多维内部多次波去除方法,具有精确的到达时间和近似的振幅,而不需要任何地下信息。当内部多次波和初级波被隔离时,ISS内部多次波衰减算法通常与能量最小化自适应减法相结合,以消除内部多次波。对于孤立的内部多次波,ISS衰减器与能量最小化自适应减法相结合是成功和有效的。然而,当内部倍数接近和/或干扰一次或其他事件时,能量最小化自适应减法背后的标准可能会失败(例如,当从破坏性干扰的一次和多次中移除倍数时,能量可能会增加而不是减少)。对于干扰事件,能量最小化自适应减法可能会损坏目标主节点,这是最糟糕的结果。在本文中,我们提供了第一个多维ISS内部多次消除算法,该算法可以预测内部多次波的正确时间和振幅。这是Weglein在2013年SEG国际会议(Weglein 2014)上提出的三管齐下战略的重要组成部分。Herrera和Weglein(2012)提出了一种1D ISS内部多次波消除算法,用于最浅反射面上产生的所有一阶内部多次波。随后,Y.Zou和Weglein(2014)进一步开发并演示了一种消除算法,该算法可以消除1D地球上所有反射器产生的所有一阶内部多次波。在本文中,我们提供了第一种多维ISS内部多次消除方法,该方法可以消除干扰初选的内部多次波,而无需地下信息,也不会损坏初选。我们还将ISS消除结果与ISS衰减加能量最小化自适应减法进行了比较,分别用于干扰一次和内部多次波。这种ISS内部多次消除算法比当前最有能力的ISS衰减加自适应减法更有效,计算量也更大。我们将其作为多重删除工具箱中的一种新功能提供,并在需要、指示和必要时为这种类型的功能提供一种新选项。这可能经常发生在海上和陆上常规和非常规油田中。我们正在探索在不影响有效性的情况下,降低这些ISS衰减和消除算法计算成本的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号