首页> 外文会议>Australian Society of Sugar Cane Technologists Conference >Site-specific non-water-stressed and water-stressed baselines to calculate CWSI to schedule irrigation for furrow-irrigated sugarcane: a new approach
【24h】

Site-specific non-water-stressed and water-stressed baselines to calculate CWSI to schedule irrigation for furrow-irrigated sugarcane: a new approach

机译:特定于特定的非水胁迫和耐水基线,以计算CWSI,以安排沟灌溉甘蔗的灌溉:一种新方法

获取原文

摘要

Water stress in irrigated broadacre crops can be detected as an elevation in canopy temperature using canopy-temperature sensors. A commonly used index that reflects water stress is the crop water-stress index (CWSI), defined as a comparison of measured canopy-air temperature difference with a non-water-stressed baseline (lower baseline, (T_c - T_a) LB) and a water-stressed baseline (upper baseline, (T_c - T_a) UB). CWSI can also be used to calculate the fraction of soil-moisture depletion (fDEP) to determine irrigation depth required. Currently, the default values of the lower and upper baselines used in the CWSI calculation are defined from studies conducted in France. This assumption may lead to inaccuracies in determining the CWSI as the baselines may not be transferrable to other locations or crops. This paper presents an investigation of the impact of site-specific upper and lower baselines on the CWSI and fraction of depletion in the root zone (fDEP) for furrow-irrigated sugarcane in Ayr, Queensland, Australia during the irrigation season of 2017-2018. CWSI values were calculated from canopy temperatures, air temperatures and vapor-pressure deficits (VPD) throughout the season and daily maximum CWSI values were linked to the fraction of soil-moisture depletion (fDEP) through the water-stress coefficient (k_s). Results suggested that baselines developed on-site performed better to schedule irrigation than did baselines developed off-site. The lower baseline (LB) equation for sugarcane was developed using canopy temperature measured from a fully irrigated field as: (T_c - T_a) LB = -1.8271 *VPD - 4.7854, with a coefficient of determination of R~2 = 0.9511, as compared to published equations with coefficients of determination of R~2 = 0.80 and 0.67. The daily maximum CWSI values obtained by using the lower baseline reported in literature were higher than the site-specific lower baseline with a mean absolute error of 0.32, indicating the need of irrigation for all days between two irrigation events. The mean absolute error in predicting root-zone depletion (Dr) by using CWSI values with the lower baseline from the literature were higher with a mean absolute error of 7.92 mm and 10.89 mm.
机译:灌溉乌龟作物中的水胁迫可使用冠层温度传感器检测为冠层温度的高度。反映水分应激的常用指数是作物水分应激指数(CWSI),定义为与非水应激基线(下基线,(T_C - T_A)LB)和较低基线)和含水基线(上基线,(T_C - T_A)UB)。 CWSI还可用于计算土壤湿度耗尽(FDEP)的分数以确定所需的灌溉深度。目前,CWSI计算中使用的下部和上基线的默认值由法国进行的研究定义。这种假设可能导致在确定CWSI时不准确,因为基线可能无法转移到其他位置或作物。本文介绍了在2017 - 2018年昆士兰昆士兰昆士兰南部灌溉甘蔗的根部灌溉甘蔗中对特异性上下基线和下基线对枯竭(FDEP)的CWSI和耗尽的影响的调查。 CWSI值由冠层温度计算,空气温度和蒸汽压力缺陷(VPD)整个季节,每日最大CWSI值通过水胁迫系数(K_S)与土壤水分耗尽(FDEP)的分数相关联。结果表明,基线开发的现场表现更好,以计划灌溉而不是基线开发的场外。使用从完全灌溉场测量的冠层温度为:(t_c - t_a)lb = -1.8271 * Vpd-4.7854,开发甘蔗的较低基线(LB)方程。相比,R〜2 = 0.9511的测定系数公开的公式,测定R〜2 = 0.80和0.67的系数。通过使用文献中报告的较低基线获得的每日最大CWSI值高于特定于位点的下基线,其平均绝对误差为0.32,表明在两次灌溉事件之间整个日期都需要灌溉。通过使用来自文献的下基线的CWSI值预测根区耗尽(DR)的平均绝对误差较高,其平均绝对误差为7.92mm和10.89mm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号